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Abstract

This paper studies optimal experimentation by a monopolist who faces an
unknown demand curve subject to random changes, and who maximises profits
over an infinite horizon in continuous time. We show that there are two qualita-
tively very different regimes, determined by the discount rate and the intensities
of demand curve switching, and the dependence of the optimal policy on these
parameters is discontinuous. One regime is characterised by extreme experimen-
tation and good tracking of the prevailing demand curve, the other by moderate
experimentation and poor tracking. Moreover, in the latter regime the agent
eventually becomes ‘trapped’ into taking actions in a strict subset of the feasible
set.
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Introduction

In this paper, we study a situation in which an economic agent can learn by experimen-
tation, that is, by deviating from the action which maximises current pay-off in order
to generate information which will increase future pay-offs. Specifically, the agent is
facing an unknown and changing reward function. After taking an action, he observes
a noisy signal of the current state, leading to a revision of his beliefs. The agent’s ob-
jective is to maximise the expected discounted pay-off over an infinite horizon. When
choosing an action, he therefore has to weigh the opportunity cost of experimentation
against its long-term informational benefits.

We are interested in a number of issues. How does the agent’s optimal action differ
from what is myopically optimal? Is this difference large or small (in a sense to be
made precise)? How well or poorly does the agent track the prevailing state? Is there
an analogue to the ‘incomplete learning’ results which are common in the literature on
experimentation in an unchanging environment, mentioned below?

Our main result is the identification of two qualitatively very different regimes. One
regime is characterised by large deviations from myopic behavior and by good track-
ing of the prevailing demand curve, the other by small deviations and poor tracking.
Moreover, in the latter regime the agent eventually becomes ‘trapped’ in a subset of
the action space and is bounded away from the myopic optimum for one of the states.

Two approaches to the problem of learning by experimentation in a single-agent setting
have emerged in the literature. One approach is to restrict the analysis to a two-period
framework, and then to determine in which way the ability to gather information in the
first period (which will be useful in the second period) affects the agent’s behaviour;
this is usually measured as a deviation from the agent’s first period myopic action.
Examples of this approach can be found in Mirman, Samuelson and Urbano (1993)
and other papers referenced in their introduction.

The second approach involves formulating an infinite-horizon model, in which case
it is natural to look at the limiting behaviour of the agent. The first such model in the
economics literature is due to Rothschild (1974), and has subsequently been extended in
a number of different directions; see, for example, McLennan (1984), Easley and Kiefer
(1988), Kiefer (1989a), and Aghion, Bolton, Harris and Jullien (1991). A common
result of these models is that the agent’s beliefs converge, in which case experimentation
will cease and no further information will be gathered — in the limit, the agent will
learn everything that is worth knowing. The question then arises as to whether the
beliefs converge to a one-point distribution at the true parameter value. Typically the
answer is that with positive probability they do not, i.e. there is incomplete learning.

We take the second approach as our starting point. However, whereas the above
papers assume there to be an unknown but fixed reward function, we follow Kiefer
(1989b) and Balvers and Cosimano (1990) in allowing this reward function to change
randomly. This adds more realism in that new data continues to be pertinent, so beliefs
continue to evolve, and the agent is not doomed to take the same action for evermore.

The agent in our model is a monopolist facing an unknown and changing demand
function. The time parameter is continuous. There are two states, each characterised



by a linear demand curve, and transitions between these states are governed by a
Markov process. The monopolist knows the slope and intercept of each demand curve
and the transition probabilities of the Markov process. However, he does not know
which demand curve he faces. At each moment of time, he chooses a quantity from
a given interval of feasible quantities, and observes a price which is the price for the
current demand curve plus noise. Given this noisy signal of the underlying demand
curve, the monopolist then updates his belief about the current state in a Bayesian
fashion. We call the quantity corresponding to the intersection of the two demand
curves the confounding quantity because it leads to the same expected price in either
state and thus to a completely uninformative price signal.

We naturally expect experimentation to be in the direction of widening spreads
between the two demand curves, thus making price observations more informative. If
the confounding quantity lies outside the range of the myopic policy function (a closed
interval spanned by the quantities that maximise instantaneous profit for each of the
two demand curves), then this direction is unambiguous. The monopolist deviates from
the myopic action by moving away from the intersection — experimentation is always
in one direction, meaning that the monopolist either produces always more than the
myopic quantity, or always less. Experimentation is moderate in the sense that the
optimal quantity always lies inside the range of the myopic policy function, and the
optimal policy function is continuous and monotonic. Moreover, experimentation is
qualitatively the same for all parameter values.

On the other hand, if the confounding quantity lies inside the range of the myopic
policy function, then there is a unique belief — the confounding belief — at which a
myopic agent would choose the confounding quantity, and the direction of widening
spreads is no longer unambiguous. We see experimentation in both directions: for some
beliefs, the monopolist produces more than the myopic quantity, for others, less. But
we also find that there are two very different experimentation regimes. For a given level
of noise, when the discount rate and the intensity of state switching are both low (in a
fairly precise sense) then experimentation is extreme in that, for beliefs in an interval
encompassing the confounding belief, the optimal action is to choose a quantity at the
boundary of the interval of feasible quantities, and the optimal quantity (as a function
of the belief) exhibits a jump from one boundary to the other. In this regime, the true
state appears to be tracked fairly well.

However, for the same level of noise, when either the discount rate or the switching
intensity is high (in a similarly precise sense) then experimentation is moderate, and
the monopolist optimally chooses the confounding quantity at the confounding belief.
In this regime, the monopolist eventually becomes trapped into choosing quantities
on just one side of the confounding quantity (the side which contains the myopic
action corresponding to the long-run average state) and the true state is tracked rather
poorly. This trap generalises the incomplete learning result of the previous literature to
a changing environment. It has the following intuition. When the monopolist does not
value information very highly, he chooses the confounding quantity at the confounding
belief, and the resulting price contains no information. His updating is then driven
exclusively by the possibility of a change in demand, which pulls him in the direction
of the long-run average state. So, while one might have thought that the introduction



of state switching would be enough to make the agent always want to seek after the
truth, we see that this is in fact not the case.

The key to the two regimes is that, of the agent’s two conflicting objectives (current
revenue versus information), one is concave in the choice variable, the other convex.
Experimentation is extreme if for some beliefs the combined objective is convex, imply-
ing corner solutions — this happens when the frequency of change of the environment
and the discount rate are low, so the value of information is high. When either of these
parameters increases, current revenue becomes more important; eventually, the com-
bined objective is concave at all beliefs, and we have interior solutions, hence moderate
experimentation.

At the parameter values where the combined objective just becomes concave through-
out, there is a discontinuous change in the optimal policy. Thus, a small increase in
the variability of the environment can provoke a near cessation of experimentation,
with drastic consequences for the process of information acquisition.

These results are new to the literature on single-agent learning in a changing environ-
ment. Previous work has either focused on different aspects of the problem, or used
frameworks that lent themselves to only limited analytical investigation.

The two papers closest to ours are Kiefer (1989b) and Balvers and Cosimano (1990),
both studying a monopolist learning about changing linear demand curves.! In a frame-
work with two possible demand curves, Kiefer calculates the value function numerically,
illustrates two types of optimal policy (one continuous, one with a jump) and simu-
lates the corresponding sample paths of beliefs and actions. In Balvers and Cosimano’s
framework, on the other hand, both intercept and slope of the unknown demand curve
are given by stochastic processes, so there is in fact a continuum of possible demand
curves. This seems more realistic than a two-state model, but the added complexity
makes it very hard to obtain analytical results. Moreover, the absence of a confounding
action means that their result of sluggish price adjustments has no direct comparison
with our main findings.

While the above papers assume a continuous action space, Rustichini and Wolinsky
(1995) use a two-armed bandit framework to study monopoly pricing when the buyers’
reservation value changes randomly. Their focus is on non-negligible pricing errors
even when the frequency of change is negligible. For certain parameter combinations,
learning will cease completely even though the state keeps changing. This can be seen
as the analogue in a discrete action space of our moderate experimentation trap.

Note that we depart from the model in Kiefer (1989b), and the overwhelming majority
of similar models in the economics literature, by formulating the problem in continuous
time.?2 The advantage of this approach is that it allows us to derive sharp analytical
results. In particular, we are able to establish key properties of the value function and
the optimal policy, and we obtain some analytical comparative statics results. Further,

!Learning about an unknown and randomly changing relationship between actions and outcomes
is also studied in Balvers and Cosimano (1993, 1994).

2Previously, such a formulation has been adopted by Bolton and Harris (1993) and Felli and
Harris (1996) who study multi-agent learning problems with a fixed distribution of rewards. See also
Bergemann and Véaliméki (1996).



in the continuous-time setting it is straightforward to characterise the sample path
properties of beliefs and optimal actions in each of the two experimentation regimes.?

The paper is organised as follows. After presenting the model in Section 1, we
proceed to analyse the monopolists’s decision problem as an optimal control problem
with his belief as the state variable: we describe the evolution of this belief over time
(Section 2), then introduce the corresponding Bellman equation and use it to charac-
terise the value function and optimal quantities (Section 3). The main results of the
paper are in Section 4 where we look at situations in which there is a confounding
belief, and the parameter space splits into two regions: one in which experimentation
is extreme, the other in which it is moderate. In particular, we consider the limiting
cases of no state switching and no discounting. Section 5 then briefly discusses the
simpler scenario when there is no confounding belief; experimentation is moderate for
all parameter values, and the comparative statics results are particularly sharp. A
summary and concluding remarks follow in Section 6. Technical results are collected
in a series of appendices.

1 The Model

There are two states, k = 0 or 1. In state k, the expected demand curve (price as a
function of quantity) is given by

P = ai — Brq

where the ag, O are positive, fixed and known. The realised price is the expected price
plus some noise term.

The state changes according to a continuous time Markov process with the transi-
tion probabilities

Pr(kisar =0 | k= 0) = 1 — AoAf +0(A), Pr(ksnc=1 | ke = 0) = AoAf + o(At),
Pr(kppar =0 | ke =1) = MAL + o(At), Pr(kaar =1 | ks =1)=1— MNAt+ o(At)
where \; > 0 (i =0, 1) are known. In particular,
Pr(ks =i Vs e [t,t+ At] | k =1i) = exp(—NAL);

see Karlin and Taylor (1981, p.146).

At each moment of time, the monopolist chooses a quantity ¢; from an interval Q) =
[Gumin, max] Of feasible quantities. We assume that production has constant marginal
cost, normalised to zero without loss of generality, so revenue equals profit. While we
impose a non-negativity constraint on quantities, we do not do so for prices. A negative
price associated with a large quantity is simply interpreted as a payment required to
make consumers absorb that quantity.

3For example, the incomplete learning result from McLennan (1984) follows immediately by simply
setting the state transition rates to zero.



Having produced ¢, the monopolist observes a price which is a noisy signal of
whether & = 0 or 1. More precisely, the increment in total revenue from setting
quantity g is

dRy = qi [(ar, — Br,qr) dt + odZ)]

where Z is a standard Wiener process independent of the process k, and o > 0, fixed
and known. Thus, dR; = q; dP, with the cumulative price process P given by

d.Pt = (Oékt — ﬁkﬂt) dt + O'dZt.

This is the process which the agent observes. Consequently, an admissible strategy
q = {¢:} for the monopolist is such that the action taken at time ¢ depends only on
the price history up to that time. The set of all admissible strategies is denoted by Q.
(See Appendix A for a formal definition.)

The monopolist’s initial belief about the state of demand is characterised by 7, his
subjective probability that ko = 1. Given this belief, the agent’s objective is to choose
a strategy q € Q so as to maximise

ul(m) = E, {/0‘00 re”th}

= E, [/0 re "t ¢ (g, — Br,qe) dt + adZt]}

where r > 0 is the discount rate, fixed and known.* Up to the multiplication by 7,

which expresses the total pay-off in per period terms, u4(rw) is the expected present
value of the revenue flow from strategy q. Note that we can also write

ul(m) = E; {/(;OO

since the stochastic integral with respect to the Wiener process Z has zero expectation.

re "t q [k, — Br, ) dt}

2 Beliefs

Following a strategy q € Q and observing the associated cumulative price process P,
the monopolist updates his beliefs about the state of demand in a Bayesian fashion.
Let m; denote the subjective probability he assigns to state 1 at time ¢, that is, the
conditional probability that k; = 1 given the history of the process P up to t.

By the law of iterated expectations, we have

geol

wi(m) = Be | [~ e Bla (on, — G} dt
where

Er @ (o, — Br,@t)] = a [(1 — ) + meay — (1 — 7) Bo + 751) ]

4Later, we shall also consider the undiscounted case, when 7 = 0.



is the expected revenue, given the observed price history, for quantity ¢;. To simplify
the notation, we introduce the functions

a(r) = (1 —7)ag+ may,

B(r) = (1—=m)B+7h

which describe the expected intercept and slope of the demand curve given the belief
m, and

R(m,q) = q[a(r) — B(T)q]

which is the corresponding expected revenue from setting quantity ¢q. Thus, we have
the representation

ul(r) = E; [/Ooore_” R(m, qp) dt (1)

which does not involve the stochastic variable k; any more; instead, expected total
pay-off is described as a function of beliefs alone.

This suggests looking at strategies based exclusively on the information contained
in beliefs. In the next section we show that optimal strategies are in fact stationary
Markov strategies, namely ones where the quantity chosen at time # is a (time-invariant)
function of the belief at that time, that is, ¢ = ¢(m). However, first we have to
investigate how beliefs evolve over time.

To this end, we define

AMm)=(1—=m)A — 7N\

and
N(m,q) = o7 'r(1 — 7)(Aa — ABq)

where Aa = a1 — ag is the difference in intercepts and AG = (6, — [y the difference
in slopes between the two expected demand curves. Then, it follows from Liptser and
Shiryayev (1977, Chapter 9) that given a strategy q € Q, the beliefs evolve according
to the filtering equation

dmy = N(m) dt + S(my, q) dZ;! (2)

where dZ is the increment of a Wiener process. In other words, the change in beliefs
dm; is normally distributed with mean A\(m;) dt and variance %2 (m, q;) dt.

Equation (2) emphasises the two separate forces which drive the updating. The
drift term A(7) dt takes account of the possibility that the state may change over the
next infinitesimal period of time. Given the current belief 7, the monopolist assigns
probability 1 — 7 to state 0, hence probability (1 — 7))y to a transition from state
0 to state 1 over the next instant dt; in the same way, he assigns probability 7\; to
a transition from state 1 to state 0. The first possibility increases the probability of
being in state 1 after the time dt has elapsed, the second reduces it, and the combined
effect leads to the drift term in (2). If at least one of the transition intensities Ao, A; is
nonzero, the linear function A is downward sloping and vanishes at the invariant belief

Ao
Ao + )\1'

T =

6



In view of this, we let A = Ay + A\; and rewrite this function as
ANm)=—=A(m—7).

This representation shows that state switching introduces mean reversion into the
evolution of beliefs. Throughout the paper, we shall fix an invariant belief 7 and use
the parameter A to measure the intensity of demand curve switches, and hence the
instability of the environment in which the monopolist operates.

The diffusion term (7, ¢;) dZ captures the influence of the observed price signal
on the evolution of beliefs. Z9 being a Wiener process, this part of the updating is
completely unpredictable. Intuitively, this expresses the fact that the current belief
already incorporates everything that there is to know, so any change must come as a
surprise. The representation

dzf =o! ((O%t — Brq)dt + odZy — |a(m) — B(m)q] dt) (3)

from Liptser and Shiryayev (1977, Chapter 9) confirms this, showing that the change in
beliefs depends on the difference between the realised price, (ag, — Bk, q:) dt + odZ;, and
the expected price, [a(m;) — B(7¢)q] dt. The greater the spread Aa— AfS ¢ between the
two demand curves, and the lower the noise level o, the more informative is the price
signal, and the more pronounced is the change of beliefs after the signal is observed.
There is, however, the possibility of a completely uninformative signal: if § = Aa/AS
is a feasible quantity, then (7, ¢) = 0, so the diffusion term would vanish were the
agent to choose the quantity ¢. All this is relevant of course only if the agent is
not subjectively certain of the current state. For m = 0 or 1, the agent rules out
any possibility of learning from the price signal: ¥(0,q) = 0 and X(1,¢) = 0, so the
diffusion term vanishes no matter which action is taken.

Finally, note that we can simplify the expression on the right-hand side of (3) to
o Yk —m)(Aa— ABq)dt + dZ,. Using this to replace dZ in (2), we obtain

dm = {)\(Wt) + 0727&(1 — ) (b — ) (A — A %)2} dt + X(7, 1) dZ;. (4)

Looking at the term which contains the factor k; — 7, we see that whenever the signal
is informative and the agent is not already subjectively certain, his belief is pulled
towards the truth.’

3 The Bellman Equation

The representation (1) for the pay-off u9(x), the filtering equation (2) for the evolution
of beliefs and the fact that Z9 is a Wiener process allow us to consider the monopolist’s
decision problem as a problem of optimal control of a diffusion process, the diffusion
in question being the process of beliefs. Following the standard approach to this type

5Note the difference in perspective between equations (2) and (4): the former describes the evo-
lution of beliefs from the perspective of the agent in our model, the latter from that of the modeller
who observes the hidden variable k;.



of control problem,® we now turn to the corresponding value function and Bellman
equation.
As usual, the value function is defined as

w*(m) = sup ul(m) (5)
qeQ

for 1 € [0,1]. It is clearly bounded and, being the upper envelope of linear pay-
off functions w4, it is also continuous and convex, convexity expressing the fact that
information is valuable to the agent.” (See Appendix B for details.)

Standard results imply that the value function has further regularity properties,
principally that it has a continuous first derivative on [0, 1], and a non-negative second
derivative almost everywhere on ]0,1[. Moreover, u* is a solution of the Bellman
equation

max {§ 5(m, ) u’(m) + A(m) ' (m) = ru(m) +r R(m,q)} = 0 (6)
q
almost everywhere; see Appendix C for details.

We give a brief, heuristic derivation of the Bellman equation. From the Principle
of Optimality, we see that u* satisfies

u(m) = max {r R(m,q)dt + e E, [u(r + dw)]} (7)

where the first term is the expected current pay-off, and the second term is the dis-
counted expected continuation value. With regard to the latter, we can approximate
e "% by 1 — rdt, and, when u is sufficiently differentiable, It6’s lemma gives us

E[u(m + dr)] = u(m) + o/ (7) Ex[dn] + L o (7) Ex[(dr)?].

From equation (2), we see that E;[dr] = A(7)dt and E.[(d7)?] = ¥*(m,q) dt. The
discounted expected continuation value is therefore

(1= rdt) (u(r) + M) o/ (7) dt + 3 S (m, q)u” () t) .
Substituting this into (7) and ignoring terms of order (dt)?, we obtain

u(m) = max {7’ R(m, q) dt + u(m) — ru(m) dt + X(m) W' (7) dt + (7, q) v () dt}
q
which, after simplifying, yields the Bellman equation (6).
The Bellman equation is our main tool for constructing optimal strategies which
will in fact be stationary Markov strategies. Such a Markov strategy is derived from

6See for instance Fleming and Rishel (1975) and Krylov (1980).

If the agent is uncertain about his prior information, and hence about his prior belief, then he can
only gain from resolving this uncertainty before choosing a strategy. If, for instance, the prior belief
is 1 with probability n and 7y with probability 1 — 7, then the agent obtains u*(nmy + (1 — n)ma) if
the uncertainty remains unresolved, while he can achieve the expected pay-off nu*(m) + (1 —n)u*(m2)
if the uncertainty is resolved. The latter dominates the former if and only if ©* is convex.



a policy function ¢ : [0,1] — @ which selects the quantity ¢ = q(m;) when m; is the
belief at time ¢. A policy function is admissible if this procedure leads to an admissible
strategy q € Q for any given initial belief 7y; in Appendix A, we present some regularity
conditions which ensure that a given policy function is admissible. Now suppose we
have a solution u of the Bellman equation (subject to boundary conditions which we
shall discuss after the next subsection) and an admissible policy function ¢ : [0,1] — Q
such that

q(m) € arg max {% Y2, q)u (7)) + M)/ (7) — ru(n) +r R(m, q)}

for all 7. Then a standard argument, the verification theorem given in Appendix C,
implies that u is the value function and ¢ an optimal policy.
We now discuss the economics behind the Bellman equation.

3.1 Interpretation
Some economic insights can be gained from rewriting the Bellman equation as

u// (7'[')

w(m) +max{22(7r,q) o T R(WJ)} (8)

r q€eQ

u(m) = A(m)

where the maximisation problem immediately indicates the fundamental trade-off be-
tween information gathering and myopic profit maximisation. We look at the three
terms on the right-hand side of (8) in turn.

The first term, A(m)u/(7)/r, represents the value of state switches. According to
(2), A\(m) indicates the magnitude and direction of the likely change in belief due to
possible state switching. This piece of (passively acquired) information has the shadow
price «/(7)/r. The resulting contribution to the value function is positive if the belief
is expected to move in the direction which increases value.

The next term, X2(m, ¢) u”(7)/2r, represents the value of information actively ac-
quired by the agent. Indeed, the discussion after equation (3) above shows that 3%(r, q)
provides a measure for the informativeness of the price signal obtained from setting
the quantity ¢. This informativeness is valued with the shadow price «”(7)/2r. Note
that for Ag # 0, the value of information is a strictly convex quadratic in ¢ with a
global minimum of 0 at ¢ = Aa/AfS. In particular, the value of information increases
strictly with the distance between ¢ and q.

The last term, R(m,q), represents the myopic pay-off.> Note that R(m,q) is a

8We refer here to a strong form of myopia which assumes that the current belief will persist forever.
If this were the case, setting the quantity ¢ forever would indeed yield

/ re” "' R(m,q) dt = R(m,q).
Jo

Alternatively, we can think of this as the expected pay-off for r = co. As r tends to infinity, the
distribution on IR, with density re~"! degenerates to a point mass at ¢t = 0, and the agent becomes
myopic in so far as he does not care for the future any more: for r = oo, ud(m) = R(m, qo).

9



concave quadratic in ¢ with a global maximum of

2
m(m) = max R(m,q) = 2/6(’78')
at the quantity
q"(m) = arg max R(m, q) = 2();,((7;)).

We call the functions m and ¢™ the myopic optimum pay-off and the myopic policy
function, respectively, and we denote the range of ¢"* by Q™. Throughout the paper,
we assume that Q™ C @, so the myopically optimal quantities are always in the choice
set of the monopolist. As

R(m,q) = m(m) — B(x)[q — ¢" (7)]?, (9)

the myopic pay-off decreases strictly as the distance between ¢ and ¢™(7) increases.

So, the agent’s problem is to choose a quantity that maximises the sum of the value
of information actively acquired and the myopic pay-off. This sum is also a quadratic
in ¢ and its convexity/concavity depends on whether or not the convexity of the value
of information term dominates the concavity of the myopic pay-off. This is the key to
the discontinuity in optimal behaviour which we will find in Section 4.

3.2 Experimentation and Information

The agent is said to experiment if he deviates from the action that would maximise
his myopic pay-off. Such a deviation entails an opportunity cost in the form of a loss
in current expected rewards; see (9). On the other hand, a deviation from the myopic
optimum might render the price signal more informative. We can thus rephrase the
above trade-off as follows: In choosing a quantity, the monopolist has to weigh the
opportunity cost of experimentation against its long-term informational benefits.

Economic intuition suggests that the monopolist will not experiment when he is
subjectively certain of the current state of demand. For 7 tending to 0 or 1, we
therefore expect that the value of information YX2(r, ¢) (u*)”(7)/2r tends to zero for all
possible quantities ¢. If this is the case, then the myopic quantity ¢ (0) or ¢™ (1) will
be optimal in (8) for m = 0 or 1, respectively, and formally taking limits in (8), we
obtain the following boundary conditions for the value function:

*\/ *\/
u*(0) — )\(O)wiJ =m(0), u* (1) — )\(1)% =m(1).
This intuition is confirmed in Appendix C where we show that these boundary condi-
tions are indeed satisfied by the value function. Hence the agent does not experiment
at the beliefs 0 and 1.
At all other beliefs, evaluating the maximand in (8) for the value function «* and
the quantity ¢ = ¢"™(m) shows that

w*(m) — )\(W)M > m(m). (10)

r -

10



Moreover, the Bellman equation implies that the agent experiments at a belief 7 if
and only if the inequality (10) is strict at that belief. We will see that there is in fact
at most one non-degenerate belief at which this inequality might fail to be strict; this
belief is identified next.

3.3 The Confounding Quantity and Belief
Unless stated otherwise, we will make the following

Assumption The two demand curves intersect at a quantity q lying strictly between

q"(0) and ¢™(1).

To be more concrete, we assume without loss of generality that the demand curve
in state 1 is steeper than the demand curve in state 0, that is, AG > 0. With this
convention, the assumption amounts to the inequalities Aa > 0 and

p A« oy
— > — > —
260 AB - 26
and the two demand curves intersect at the point with co-ordinates

Aa . o1 — a1 f

in the (q, p)-plane,’ as in Figure 1.

We saw in Section 2 that choosing the quantity ¢ leads to a completely uninformative
price signal — the expected price for this quantity is p regardless of the state of demand.
As this constitutes a confounding action in the sense of Easley and Kiefer (1988), we
shall refer to ¢ as the confounding quantity.

If the monopolist were to choose ¢, then he would acquire no information and so
for this action to be optimal it must maximise his myopic pay-off; that is, given the
belief 7, ¢ can be optimal only if § = ¢"(m). Straightforward algebra shows strict
monotonicity of the myopic policy function, so there is a unique belief at which the
monopolist could possibly find it optimal to choose §. We denote this belief by 7,
and, lacking a better name, we may sometimes call it the confounding belief. Now, as
q™(7) = q, a simple calculation reveals that

&%) ﬂo

9 Note that under this assumption, the situation faced by the monopolist satisfies the two necessary
conditions for experimentation identified by Mirman, Samuelson and Urbano (1993) in a two-period
framework: experimentation is informative since a change in quantity affects the informativeness of
the price signal (A # 0); and information is valuable in the sense that different quantities are optimal
in the two states (¢™(0) # ¢™(1)). In fact, these two conditions are sufficient for experimentation
to occur at almost all beliefs m. To see this, note that ¢"(0) # ¢ (1) implies strict convexity of the
myopic pay-off function m, which in turn implies strict convexity of the value function u* since the
Bellman equation rules out linear segments for v* if m has none. In particular, we have (u*)" > 0
almost everywhere. As AfS # 0, this means that the myopic quantity ¢™(w) violates the first order
condition for the maximisation problem in (8) at almost all 7. At the same time, this shows that the
inequality (10) is strict almost everywhere.
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Figure 1: The two demand curves

For future reference, we define m = pg. Clearly, m = R(7, §), so we can interpret
it as the expected revenue, given any belief 7, from the quantity ¢. In particular,
m = m(7), and it is easy to verify that this is the global minimum of the myopic
pay-off function m; in fact, m is strictly decreasing on [0, 7] and strictly increasing on
[7, 1].

We noted at the end of Section 3.1 that for each current belief 7, the agent maximises
the sum of two quadratics, one convex centred on ¢ and one concave centred on ¢™ (7).
At the belief 7, these quadratics are thus centred on the same quantity, as is their sum.
Therefore, we expect either no experimentation at 7 (when the combined quadratic is
concave) or extreme experimentation (when the combined quadratic is convex) meaning
that ¢uax O ¢min 18 chosen. The Bellman equation indicates further that the case of no
experimentation at 7 is characterised by the condition

*\/ (4
w(7) — /\(;T)M =1,
r
while the case of extreme experimentation corresponds to the inequality
u*) (7
wr(w) = A L&
r

We shall confirm this below.
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3.4 A Differential Equation for the Value Function

The next step in solving the agent’s problem is to use the Bellman equation to derive
an ordinary differential equation for the value function. The obvious way to do this is
in two stages: first calculate optimal quantities in terms of 7, u(w), «/(7) and u”(7);
then insert these back into the Bellman equation and solve for «” (7). However, starting
with a simple reformulation of the Bellman equation enables us to get to the desired
ODE more directly.

Introducing the notation

7(r) = AB* o2 7% (1 — )?
so that ¥%(m, q) = 7(7) [¢ — ¢]%, we can rewrite (8) as

()

2r

) — ) a4

+ R(W,q)}. (11)

As R(m,§) = m, q is suboptimal in (11) as long as u(r) — A(m)u/(7)/r > m. Under
this condition, (11) is then easily seen to be equivalent to

rny W) ) A ()= i)

2r  qeQ—{a} lq — g
and a quantity ¢* € @ — {¢} attains the maximum in (11) if and only if it attains the
minimum in (12).%°
This observation effectively reduces the analysis of the Bellman equation to the
analysis of the function

, (12)

G(m,v) = min v=Rir.q)

_ 13
q€Q—{d} [C]—(ﬂQ (13)

and the correspondence
- R
O(m,v) = argmin w
0c@—{a} [q—d]
for (7, v) lying in the set
A={(m,v) €]0,1[ xR: v>m(r) and v > m}.

Here, v is a generic variable standing for u(7) — A(mw)u/(7)/r. Note that the condition
v > m rules out exactly the point (7,m), i.e. the lowest point on the graph of the
myopic pay-off function m; see Figure 2 below.

The function G is well-defined on A, that is, O is nonempty-valued, and we shall

see below that G is continuous on A.!* This implies that the value function u* is twice
differentiable and solves the ODE

() G<7r, u(r) — A(w)“/(”)> (14)

2r r

10A detailed derivation of this equivalence is given in Appendix D.

1'We shall give an explicit expression for (¢ which makes continuity obvious. Alternatively, we could
show continuity by applying standard arguments which are used in the proof of Berge’s Maximum
Theorem.
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at least on ]0, 1[ —{#}, and on the whole of |0, 1[ if u*(7) — X\(7)(u*)'(7)/r > m.12

Conversely, we have the following verification theorem. Suppose the function u has
a continuous first derivative on [0, 1] and solves (14) on |0, 1[ —{7} with the boundary
conditions u(0)—A(0)'(0)/r = m(0) and u(1)—A(1)w/(1)/r = m(1); moreover, suppose
that there is an admissible policy function ¢* such that

¢* () € O<7r, u(m) — A(w)ul(ﬂ)

r

for all 7 # 7. Then v = w*, and the policy function ¢* is optimal. (This follows directly
from Proposition C.2 in the Appendix.)

3.5 Optimal Quantities

We turn now to a more explicit analysis of the function G and the optimal quantity
correspondence O. We just outline the general structure; details are given in Appendix
D. The area A can be divided into four regions by rays emanating from (7,m), as
in Figure 2. The regions which border on the curve v = m(7) are associated with
the minimisation problem in (13) having an interior solution, and the other two are
associated with it having a corner solution. In brief, moving clockwise from the left, we
shall have: interior solution, corner solution ¢,,.,, corner solution ¢,,;,, interior solution.
The leftmost ray which separates the first two regions goes up and to the left from
(m,m) and is determined by the borderline case where the first order condition for
the minimisation problem in (13) holds for ¢ = ¢uax. Similarly, the rightmost ray
which separates the last two regions goes up and to the right and is determined by the
borderline case where the first order condition holds for ¢ = ¢;,. Interior solutions are
obtained in the regions (denoted by Ay, and Ay ,) which lie below these rays, and
are given by!?
) — ),
LT ) — ). (15)

Evaluating the minimand in (13) at these quantities, we find

O, v) = q"(v) +

m(m) —

v —m(m)
G(m,v) = /B(W)ﬁ (16)
in the two regions associated with interior solutions.

Corner solutions are obtained in the area between the leftmost and rightmost rays.
This area splits into two regions along a third, central ray (denoted by R.) which is
determined by the borderline case when ¢n., and ¢uin are both optimal and so give
the same value in (13). We have O(7,v) = ¢uax between the left and the central ray,
O(m,v) = {qmax, qmin } along the central ray, and O(7,v) = ¢uin between the central
and the right ray. The corresponding expressions for G are

v — R(ﬂ-v qmax)
[Qmax - 6]2

2As G(m, w*(m) — A(w)(u*) () /r) is continuous in 7 as long as u*(7) — A(w)(u*)'(7)/r > 7, this
statement follows directly from Corollary C.1 in the Appendix.
B3When O(7r,v) is a singleton, we write O(m,v) = ¢ rather than O(m,v) = {q}.

G(m,v) = (17)
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Figure 2: The four regions

The convex curve is the myopic pay-off v = m(m).

and R
(O Ty Qmin
G(Tr, 1)) = A(—7q2> . (18)
[q - Qmin]
Given the representations (16) — (18) on the respective regions, it is now straightforward
to verify that G is continuous on A.'4

3.6 The Adjusted Value Function

The previous subsection shows that optimal quantities depend only on the belief m and
the value at 7 of the function

v () = ut () — )\(W)M (19)

which we call the adjusted value function. Since knowing the adjusted value function
will be enough to determine optimal policies, our next step is to transform the ODE

4Note, however, that it cannot be extended continuously into the point (#,77) that we excluded
from the set A. For a sequence of points (m,,v,) in A converging to (7, ) along the graph of the
myopic pay-off function m, for example, lim,_ . G(7,,v,) = 0; for a sequence converging to (7, 7)
along the central ray, on the other hand, this limit is 5(7).
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(14) for u* into an ODE for v*. Note that the boundary conditions become very simple:
v* and m coincide at the beliefs 0 and 1. Note also that once we know v*, we can recover
u* by integrating (19), that is, by solving a linear ODE.

We formally differentiate the equation v(7w) = u(m) — A(7) /() /r twice, each time
using the relationship 7(7)u”(7)/2r = G(7,v(7)) to replace v” with an expression that
involves only 7 and v. This yields the following second-order ODE for the adjusted
value function:

T(ﬂ')@ =rG(mo(n)) + A {f(ﬂ') G(m,v(m)) + (7 — ﬁ')%G(ﬂ',U(TF))} (20)
with /() 21— 2m)
f(7r):2—(7r—7r)7_(7r) :2—(7r—7r)m.

As for differentiability of G, it is easy to check that G is continuously differentiable
in the interior of A with the exception of the central ray separating the regions where
(max OF Gmin 18 optimal. We will therefore consider the ODE (20) separately to the left
and to the right of that ray.

Summarising the developments so far, we can say that the adjusted value function
solves (20) on ]0, 1] with the possible exception of the confounding belief 7 or any belief
where the graph of v* crosses the central ray. Conversely, if we have a solution (in the
sense of the previous sentence) v of (20) with the above boundary conditions and such
that ¢*(m) = O(m,v(m)) defines an admissible policy function, then v = v* and the
policy ¢* is optimal. It is mainly this version of a verification theorem that we will use
below.

When the optimisation problem in the Bellman equation has an interior solution,
G(m,v) is given by (16), so the ODE (20) becomes

(@~ { <7“ A [ f(x) + (7 = 7) fﬁf)D ”(&;)‘_’”757”)
+A (7 — 7) [—“(:(;)__m?;”)” (21)

in this case. Many of the results obtained in the following sections are based on a
detailed investigation of this particular differential equation.

While we have derived the above statements for a discount rate » > 0 only, they
continue to be valid in the limiting case of no discounting (r = 0) once we use a
definition of the adjusted value function that corresponds to the so-called catching-up
criterion; we refer the reader to Appendix E for details.!® The undiscounted case

13Tn fact, the method of variation of constants shows that for A > 0,
u(m) = (r/A) | = & sign(r — 7) [ 1€~ 774 ole) dg

is the unique bounded solution of the ODE u(m) — A(w)«/(7)/r = v(w) for any given continuous
function v.
16See Dutta (1991) for a discussion of undiscounted decision criteria in a discrete time framework.
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provides a useful benchmark; in fact, economic intuition suggests that the optimal
experimentation strategy of an agent with discount rate r > 0 will be somewhere ‘in
between’ the two extremes given by myopic behaviour (corresponding to r = o), on
the one hand, and the behaviour of an infinitely patient agent (r = 0), on the other
hand.'”

4 Experimentation Regimes

The assumption that the confounding quantity ¢ lies in the interior of Q™ brings with
it two complications. A first complication arises from the fact that it might be optimal
at T to choose ¢. As we saw already, choosing ¢ leads to a completely uninformative
price signal, makes the diffusion coefficient in the updating equation (2) vanish and
thereby causes a singularity in the Bellman equation and the related ODEs. Moreover,
there is a ‘break’ in the ODE for the adjusted value function along the central ray.

A second complication arises from the fact that the direction of increasing informa-
tiveness of the price signal is ambiguous. Assume for example that the current belief
is slightly higher than 7, so the myopically optimal quantity is slightly below ¢. The
true optimum will usually involve some deviation from the myopic quantity, motivated
by the desire to render observed prices more informative, and naive intuition suggests
that the monopolist might wish to move further away from ¢ by reducing quantity.
However, it could also make sense to increase quantity beyond ¢ and thus achieve a
wider spread between the two possible price distributions there.

For beliefs close to the boundaries of the unit interval, on the other hand, we do
expect the naive intuition to be borne out. Thus, we expect optimal experimentation in
both directions, involving both quantity expansion for beliefs 7 close to 0, and quantity
reduction for beliefs 7w close to 1. The optimal policy as a function of beliefs will then
have to move downward past ¢ as 7 increases. This raises the following question: does
the optimal quantity change continuously, or is there a jump?

Answering this question, we shall first characterise the two regimes of optimal ex-
perimentation that can arise. In the moderate experimentation regime, the optimal
policy selects quantities in @™, the range of the myopic policy, only, and it chooses ¢
at 7. In the extreme experimentation regime, each of the quantities ¢uax and quin is
chosen on a set of beliefs of positive measure; in particular, ¢u.x Or ¢min Will be chosen
at 7, and the optimal policy will exhibit a jump past ¢ from one extreme quantity to
the other. These regimes are further distinguished by the sample path behaviour of
posterior beliefs and optimal quantities. While extreme experimentation implies that
any posterior belief can be reached with positive probability, moderate experimenta-
tion restricts posterior beliefs to lie on one side of 7 in the long run, so the monopolist
ends up producing quantities from only part of Q™.

We will show that extreme experimentation arises for low values of r, A and o,
and moderate experimentation for high values. Near the boundary between the cor-
responding parameter regions, a small change in any of these parameters can trigger

I"Moreover, it is well known that the undiscounted case tends to be mathematically more tractable
than the discounted case. See for instance Bolton and Harris (1993) and Harris (1988).
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a change in the experimentation regime, hence a large discontinuous change in the
monopolist’s strategy and the resulting sample path behaviour of beliefs and quanti-
ties produced. These results are particularly clear in the limiting cases where at least
one of the parameters r and A is zero. The simple benchmark where the monopolist
uses the catching-up criterion (r = 0) and the environment does not change (A = 0)
allows a closed-form solution for the optimal policy. In the undiscounted case with
state switching (r = 0 and A > 0) we will establish the existence of a critical switching
intensity A* that separates moderate from extreme experimentation. Similarly, we will
find a critical discount rate 7* in the discounted case without state switching (r > 0
and A = 0).

Throughout this section, we fix demand curve parameters ag, a1, By and (; such
that the confounding quantity ¢ lies in the interior of Q™; an invariant belief 7 €

10, 1] —{#} is also held fixed.

4.1 Moderate versus Extreme Experimentation

Let © be the set of all possible combinations of the three parameters r, A and o, that
is, ® = {(r,A,o) :r>0,A > 0,0 > 0}. Let (D;zv)(7) denote the one-sided derivative
of a function v at 7 in the direction of 7, and (D,v)(7) the one-sided derivative in
the opposite direction. Recall the structure of the ODE (20) for the adjusted value
function, and in particular its special case (21) corresponding to interior solutions of
the optimisation problem in the Bellman equation.

Theorem 4.1 The parameter set © can be partitioned into two non-empty sets O,
and ©, such that:

(i) If (r,A,0) € O, then v*(7t) = m, v* > m on |0,1] —{7}, v* is strictly convex
with (v*)" >0 on |0,1] ={7}, and (Dzv*)(7) = 0. Furthermore, v* is the unique
solution of the ODE (21) on ]0,1[ —{7} subject to v*(w) = m(w) at # =0, 7, 1,
v* > m everywhere else, and (Dzv*)(7) = 0.

(ii) If (r,A,0) € O, then v* > m on the whole of 10,1[, and v* is the unique dif-
ferentiable function which solves the ODE (20) on {m € |0,1[: (m,v*(7)) € R.}
subject to the conditions v*(0) = m(0), v*(1) = m(1) and v* > m everywhere
else.

PrROOF: Let ©,, be the set of all parameter combinations in © for which the corre-
sponding adjusted value function satisfies v*(7) = 1, and ©, the set of all combinations
for which the adjusted value function satisfies v*(7) > m. Since v*(7) > m for all pos-
sible parameters, these two sets trivially partition ©. We shall see later that neither of
them is empty.

For v*(7) = m, the statements on convexity and the one-sided derivative (Dzv*)(7)
are shown in Appendix F; see Proposition F.2. Given v*(7) = 7 and the boundary
conditions, convexity entails (m, v*(7)) € Ajps U Aing, for all 7 € 10, 1] —{7}. Sections
3.4 and 3.6 therefore imply that v* solves (21) on ]0,1[ —{7} subject to the stated
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conditions. If v is another solution of (21) on |0, 1] —{7} with v(7m) = m(7) at 7 =
0, 7, 1and (Dzv)(7) = 0, then the construction of (e-)optimal strategies in the proof of
Proposition 4.2 below and our verification theorem imply that v = v*. Finally, if there
were a m # 0, 7, 1 such that v*(7) = m(7), then v* —m would have a local minimum
there, hence (v*)”(7w) > m”(7) > 0. But v*(7) = m(7) would imply (u*)”(7) = 0 by
ODE (14) (or its undiscounted variant), hence (u*)” would have a local minimum at .
This would require (u*)”(7) = 0 and, since (v*)”(7) is a linear combination of (u*)"(7)
and (u*)"(m), we would have (v*)"(7) = 0 — a contradiction.

For v*(7r) > m, Sections 3.4 and 3.6 imply that v* is once continuously differentiable
and solves the ODE (20) on {7 € ]0,1[: (m,v*(7)) € R.}. Given another solution v
with this property and the same boundary conditions, the arguments in the proof of
Proposition 4.1 below together with the verification theorem imply again that v = v*.
Finally, the same argument as above shows v* > m for all beliefs 7 # 0, 1 with
(m,v*(7)) € R; this implies v* > m on the whole of ]0, 1]. |

The following two propositions characterise the optimal experimentation behaviour
in scenarios (i) and (ii) of the theorem. We start with (ii), which is the easier case.

Proposition 4.1 (Extreme Experimentation) Ifv*(7) > m, then the optimal pol-
icy function prescribes each of the extreme quantities quax and qmin 0N a set of beliefs
of positive measure, and is continuous except for a jump from one extreme quantity
to the other at each belief m such that (w,v*(m)) € R.. The corresponding process of
posterior beliefs is reqular on |0, 1], that is, starting from any point in this interval, any
other point in it may be reached with positive probability.

ProoF: The policy function ¢* obtained by extending O(m, v*(7)) continuously into
7 = 0 and 1 and selecting either ¢uax Or ¢min at each m where (7,v*(7)) € R, is
piecewise continuous with [¢*(7) — ¢]* bounded away from zero, hence admissible by
Proposition A.1 and optimal by the verification theorem from Section 3.6. Clearly,
q*(T) = @max ON a set of positive measure, and the same is true for ¢.;,. The fact that
[¢*(7) — 4]? is bounded away from zero also implies regularity of the process of posterior
beliefs. |

For parameters in ©,, we thus find extreme experimentation in the sense that
the quantities ¢u.x and ¢u;, are optimal for non-negligible sets of beliefs. Moreover,
optimal quantities are always some distance away from the confounding quantity, so
the information content of the price signal observed by the monopolist is bounded away
from zero. The resulting process of posterior beliefs can therefore reach any point in
the open unit interval with positive probability.

An example of extreme experimentation is shown in Figure 3 which has been calcu-
lated for 7 = 0.1 and A = 0.05.'® The bold line in the upper panel is the graph of the

18Tn this and all the subsequent figures, the demand curve parameters are oy = 40, 3o = 2/3, a; = 60
and 1 = 3/2, implying ¢"™(0) = 30, ¢"™(1) = 20, ¢ = 24 and 7 = 0.4. The range of feasible quantities
is defined by gmin = 40/3 and ¢ax = 40, the noise parameter is o = 5, and the invariant belief is
7 =10.5. Only r and A vary across figures. The adjusted value function is calculated as a numerical
solution to the ODE (20) subject to the boundary conditions v*(0) = m(0) and v*(1) = m(1), and
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adjusted value function v*, the thin line that of the myopic pay-off function m, and the
bold dashed line that of the value function u*. The upper panel also shows the three
rays introduced in Section 3.5. In the lower panel, the bold line is the optimal policy
function ¢*, while the thin line is the myopic policy ¢. The adjusted value is strictly
higher than the myopic pay-off at all non-degenerate beliefs, and as v* crosses each ray
in turn, ¢* first reaches g.,, then jumps to ¢, and finally moves away from q;,.

The corresponding sample path behaviour is illustrated in Figure 4. The upper
panel shows the evolution of the agent’s belief starting from the prior 7y = 0.25, the
lower panel the associated quantities. The bold dashed line in either panel represents
the true state, the initial state being ky = 0. By the time of the first state change, the
agent’s belief has predominantly been between 0 and 0.2. After the state change, the
belief moves relatively quickly in the direction of the new state and eventually reaches
7. This starts a phase of intense experimentation with frequent jumps between gy .«
and ¢ui,. At the end of this phase, the belief leaves the neighbourhood of 7 to move
closer to the true state. This pattern is repeated each time the state switches, and the
true state is tracked quite well.

Next, we turn to case (i) of Theorem 4.1, v*(7) = m. This case is more complicated
since it 1nvolves the ‘singularity’ at (7,m) of the ODE for v*. We formulate the next
result for A > 0; we shall obtain the analogous result for A = 0 later, in Section 4.3.

Proposition 4.2 (Moderate Experimentation) Let A > 0 and v*(7) = m. Then
the optimal policy assumes values in Q™ only and selects ¢ at w. With probability one,
the resulting process of posterior beliefs is confined to one of the subintervals |0, 7| or
|7, 1] in the long run, and the monopolist ends up choosing quantities in either |, q"(0)[

or]¢™(1),q[ only.

More precisely, the proof will show that the optimal policy function is differentiable if
v* is differentiable at 7, while it has a single jump at 7 if v* has a kink.

Proor: For m € |0,1] —{7}, we have (7,v*(7)) € Aints U Ainr» by convexity of v*
and hence

O(m, v (7)) = ¢"(7) +

v*(m) mgﬂ) B v* () 717 (g™ () — d]
m(m) —m m(m) —m
from (15). Strict convexity of v* also implies that v* < 7, on |0, 7] and v* < T, on
|7, 1[ with 7, and 7, being the functions whose graphs are the straight lines joining the
point (7r,m) with the points (0, m(0)) and (1,m(1)), respectively. It is straightforward
to verify that O(mw,m,(7)) = ¢ (0) on |0, 7] and O(7,m, (7)) = ¢"*(1) on |7, 1[. Since
v* > m on |0, 1], we conclude that ¢™(m) < O(m,v*(7)) < ¢"(0) on |0, 7[ and ¢"(7) >
O(m,v*(m)) > ¢™(1) on |x,1[. In particular, O(m,v*(7)) assumes values in Q™ only.
Straightforward algebra shows that
2 v(m)—m

O, v"(m)) = 4 -

Ao 7wT—7

optimal quantities are then determined through the optimal policy correspondence. Details of the
numerical procedure are reported in Appendix H.
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so O(m,v*(7)) — ¢ as m — 7t iff (Dyv*)(7) =0.

If (v*)(7) =0, O(mw,v*(m)) can therefore be extended to a continuous policy func-
tion ¢* : [0, 1] — Q™ with ¢*(7) = ¢. In fact, the policy is differentiable with bounded
derivative, hence Lipschitz continuous. This is obvious for beliefs different from 7;
differentiability at 7 follows from the representation

¢(m) =i _v(x) =i ") =

T—T7 m(m)—m T—7

and the fact that the ratio [v*(7) — m]/[m(7) — Mm] tends to a finite limit as 7 — 7
(see Proposition F.2). The policy ¢* is admissible by Proposition A.1, hence optimal
by the verification theorem from Section 3.6. Turning to the belief process resulting
from this policy, let us assume 7 > 7 for concreteness. Starting from a prior belief
7o in the subinterval [, 1], all posterior beliefs 7; will remain in the open subinterval
|7, 1] because the inequality A(7) > 0 makes the belief 7 an entrance boundary. (Since
A1) < 0 for @ # 1, the right boundary of the unit interval is always an entrance
boundary.) If 7y < 7, on the other hand, the process of beliefs will, with probability
one, reach 7 in finite time and then move into the subinterval |7, 1].

Next, suppose that v* has a kink at 7. To be concrete, we assume again that 7 > 7,
so (D_v*)(7) < 0 and (Dyv*)(7) = 0. Let ¢* be the policy function obtained by
extending O (7, v*(7)) continuously into 7 = 0 and 1 and setting ¢*(7) = ¢; again, this
function takes values in @™ only. By Proposition F.2, the ratio [v*(7) —m]/[m(7) — 1]
tends to a finite limit as # — @+. As above, this implies that the restriction of
the policy function ¢* to the interval [, 1] is Lipschitz continuous, hence admissible.
Moreover, if the prior belief 7wy lies in this subinterval and the monopolist uses the
policy ¢*, then all posterior beliefs 7; will remain in |7, 1] by the same argument as
above. By the verification theorem, the policy ¢* is thus optimal for all prior beliefs
o 2 .

From the above expression for O(w, v*(7)), we see that ¢* approaches the limit

2
¢ (=) = ¢~ x~ (D-v*)(7) € ]4.¢" (0)]
from the left of 7. On the subinterval [0, 7], the function ¢* is (locally) Lipschitz
continuous, so the existence result underlying Proposition A.1 implies that, starting
from any prior belief 7y < 7, the policy ¢* generates a unique stochastic process of
beliefs up to the first time 7 is reached; with probability one, this happens in finite
time. From then on, the process of beliefs is uniquely determined by the restriction
of ¢* to [r,1]. This establishes admissibility of the policy ¢* on the whole of the unit
interval,'® and optimality follows from the verification theorem. [ |

19The technical details required to make this argument fully rigorous are beyond the scope of this
paper. One can avoid these complications altogether without affecting the main results by constructing
e-optimal policies. Given an arbitrary € > 0, define § = €/(1 + max,egm [q — §]2). Since (D_v*)() <
0, 7(m)(u*)”(m)/(2r) converges to B(7) as m — 7—. (We only deal with the case » > 0 here; a
similar argument can be given for the undiscounted case.) Next, the continuity of v* implies that
R(m,q) — v*(m) converges to —3(#)[q — G]* as m — 7, and this convergence is uniform in ¢ € Q™. So
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The proposition shows that optimal experimentation is moderate for parameters in
O,,, meaning that the monopolist restricts himself to quantities in ™. The optimal
policy function approaches the confounding quantity from at least one side of 7, the
side where 7 lies. In a changing environment, this implies that starting from any prior
belief lying on the same side of 7 as 7, the process of posterior beliefs will stay on this
side forever; starting from a prior belief on the other side of 7, the process of posterior
beliefs will cross 7 almost surely in finite time and then be confined to the side where
7 lies. Eventually, the monopolist’s beliefs will thus be ‘trapped’ on one side of 7,
although he knows that the state of demand will continue to switch from time to time.
This result is the analogue, in a changing environment, of the possibility of cessation of
learning in an unchanging environment as identified by Rothschild (1974), McLennan
(1984), Easley and Kiefer (1988), Aghion, Bolton, Harris and Jullien (1991) and others;
cf. our discussion of the case A = 0 below.

Figure 5 shows an example of moderate experimentation, calculated for » = 0.1 and
A =0.2. Again, the bold line in the upper panel is the adjusted value function v*, the
thin line the myopic pay-off function m, and the bold dashed line the value function
u*. In the lower panel, the bold line is the optimal policy function ¢*, and the thin line
the myopic policy ¢™. The adjusted value function v* touches the myopic pay-off at
its lowest point. Consequently, the optimal policy ¢* never selects quantities outside
the range of the myopic policy, spanned by ¢™(0) = 30 and ¢ (1) = 20. Furthermore,
it appears that v* is differentiable at 7 = 0.4, and ¢* moves smoothly through ¢ = 24.

Figure 6 illustrates the corresponding sample path behaviour. The upper panel
shows how the belief process is trapped after its transit through 7; in particular, the
true state (again represented by a bold dashed line) is tracked poorly. As a consequence,
the resulting path of optimal quantities in the lower panel remains in the range from
g™ (1) =20 to ¢ = 24 after its first passage through the confounding quantity.

The moderate experimentation scenario where v* has a kink at 7 is particularly
interesting.? If # > 7, say, and (D_v*)(#) > 0, the optimal policy approaches a limit
different from ¢ as m — m—; see the proof of Proposition 4.2. This is due to the fact that
to the left of 7, (v*)" is bounded away from zero, so (u*)” is relatively high, implying a
high value of information. Intuitively, we can interpret this as follows. With a posterior
belief slightly to the left of &, the agent anticipates that once his belief crosses 7, he
will not find it profitable to experiment in a way that would allow his belief to cross 7
from the right to the left again. Therefore, he experiments relatively strongly so as to

we can find p > 0 such that 7(7)(u*)"(w)/(2r) > B(%) — 6 and R(w,q) — v*(7) > —B(#)[q — 4> — 6
for all m € [7 — p, @] and all ¢ € Q™. The Lipschitz continuous (hence admissible) policy function
ge : [0,1] — Q™ which coincides with ¢* on [0,7 — p] U [, 1] and whose graph joins the points
(= p,q* (7 — p)) and (7, §) by a straight line satisfies

(u*)" () [

o q€<7T) - Cj]2 + R<7T7qe<7r)) - U*<7T) > —€

7(m)
on [ — p, 7], hence is e-optimal by Proposition C.2. The resulting long-run behaviour of beliefs and
actions is as in the proposition.

2ONote that this is the only case where the value function u* fails to be twice continuously differen-
tiable on the whole of 10, 1].
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give his belief a chance to avoid the trap for now and move away from 7 to the left,
should the current true state be k = 0.

The above results show that the optimal experimentation behaviour depends qual-
itatively on the parameters r, A and o, and the two regimes of experimentation lead to
markedly different behaviour of beliefs in the long run. These results also imply that
a small change in one of the parameters r, A and o can trigger a large discontinuous
change in the monopolist’s strategy and the resulting stream of quantities that he pro-
duces. We will see this particularly clearly in the special cases which we study below.
Finally, note that the more variable the environment, the less variable are the agent’s
actions, and vice versa.

4.2 Sufficient Conditions and Critical Parameter Values

We would naturally expect moderate experimentation for high values of r, A and o,
and extreme experimentation for low values. In fact, high values of these parameters
are bound to reduce the value of information so much that the monopolist rationally
assesses the loss in current revenue from experimenting strongly near « to be higher
than the loss in future revenues resulting from sometimes being trapped on the ‘wrong’
side of 7. Before formulating a result to this effect, we first want to point out that
the choice of the interval @) of feasible quantities is irrelevant for the partition of the
parameter set © into ©,, and ©,. This is a direct corollary of Theorem 4.1.

Corollary 4.1 Given a parameter combination (r, A, o), experimentation is moderate
(extreme) for some QQ O Q™ if and only if it is moderate (extreme) for all @ D Q™.

Proor: This follows immediately from the fact that if v*(7) = m, then v* is char-
acterised by the ODE (21) which does not depend on the quantities gup.x and g, as

long as Q = [qminv Qmax] ) Qm- L

We are therefore free to choose the interval () in a convenient way when we look for
sufficient conditions for either type of experimentation. This is exploited in the proof
of the following result.

Proposition 4.3 There are positive constants v, > Ve and Ky, > ke such that optimal
experimentation is moderate with a differentiable policy function for allr > 0, A > 0

and o > 0 satisfying
r A
—+— 2>
Km  Tm

and extreme for all ¥ > 0, A > 0 and o > 0 satisfying

1
o2’

Proor: By Proposition G.3, there are positive constants ¢; and ¢y such that for all
r >0, A>0and o > 0 satisfying r + c;A > ¢3/0?, there exists a continuous function
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v : [0,1] — IR which solves (21) on |0,1][ —{7} with v(7) = m(7) at # = 0, 7, 1,
v > m everywhere else, and v — 1 < 2 (m —m) in a neighbourhood of 7. In particular,
v is differentiable at 7 with /() = 0. The uniqueness part of Theorem 4.1 (i) implies
v = v*. Experimentation is therefore moderate with a continuous optimal policy for
all these parameter combinations. We can thus set k,, = ¢ and 7, = ¢a/c1.

Turning to extreme experimentation, we assume without loss of generality that
gc = q, where ¢, is the midpoint of the interval (). This makes the central ray R.
vertical and simplifies the construction of solutions to the ODE (20) via the techniques
of Appendix G. In fact, Proposition G.4 shows that there are positive constants cs,
¢y and ¢z such that for all » > 0, A > 0 and ¢ > 0 satisfying c3r + c4A < ¢5/02,
there exists a continuous function v : [0,1] — IR with the following properties: v is
once continuously differentiable and satisfies m < v < ™ on |0,1[; v(0) = m(0) and
v(1) = m(1); and v solves (20) on |0,1[ —{7}. By the uniqueness part of Theorem 4.1
(ii), we have v = v*, so experimentation is extreme for these parameter combinations,
and we can take k. = ¢5/c3 and v, = ¢5/¢y. [ |

Note that the constructive approach used in the proof (based on Propositions G.3
and G.4) yields explicit formulae for constants v, m, Ve and k. with the above
properties. The proof also shows that under the stated condition for moderate exper-
imentation, the adjusted value function is always differentiable at «. In particular, a
kink in ©* can only occur in an ‘intermediate’ range of parameter combinations.

Using the fact that v* is strictly convex whenever v*(7) = m, we can derive a more
precise characterisation of the boundary between the parameter regions associated with
moderate and extreme experimentation. Before formulating this result, we note from
the ODE (20) that v* depends on 7, A and ¢ only through the two products x = ro? and
v = Ac?. This reduces the parameter space effectively to the non-negative orthant Ri,
which splits into a region of moderate experimentation, K,, = {(r 0%, Ac?) : (r,A,0) €
O, }, and a region of extreme experimentation, K, = {(ro?, Ac?) : (r,A,0) € ©.}. As
the following result shows, the boundary between these two sets cuts each ray through
the origin in a single point. Thus, we can ‘trace’ this boundary by varying the slope
of the ray.

Proposition 4.4 Let R be a ray in Ri emanating from the origin (0,0). Then, there
is a unique point (k7,77) € R — {(0,0)} such that experimentation is extreme for all
(k,y) € R with (k,v) < (k7,97), and moderate for all (k,~v) € R with (k,v) > (k7,~7).

PRrROOF: Fixing a point (kg,v) € R — {(0,0)}, we can parameterise the ray R by the
mapping g — (uko, f1yo) where o > 0. We write v*[p] for the adjusted value function
associated with the parameters (uko, (7). Define M = {p > 0: v*[p](7) = m} and
ut = inf M. By Proposition 4.3, M is non-empty, and p' is finite and positive. By
Proposition F.2, v*[] is strictly convex for all ;1 € M, so we can replicate the compar-
ative statics argument in the proof of Theorem 5.2 below to conclude that if p € M
and g/ > pu, then y/ € M. Combined with a standard continuity argument, this shows
that M = [u', ool. |
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We have the following two corollaries to the above proposition for the limiting cases
where either A or r is zero. Given o, we find thresholds r* > 0 (when A = 0) and
A* > 0 (when r = 0) which separate extreme from moderate experimentation. This
illustrates once more that a small change in the discount rate or in the variability of
the environment can trigger a discontinuous qualitative change in optimal behaviour.

Corollary 4.2 Let A = 0. Then there exists a unique real number k* > 0 such that
optimal experimentation is extreme if r < k*/o?, and moderate if r > k* /0.

PROOF: Apply Proposition 4.4 to the ray IR, x {0} in Ri. [ |

Corollary 4.3 Letr = 0. Then there is a unique real number v* > 0 such that optimal
experimentation is extreme if A < v*/o?, and moderate if A > v* /o2

PROOF: Apply Proposition 4.4 to the ray {0} x R in IR?. [ |

We mentioned above that k,,, ke, vm and 7. as in Proposition 4.3 can be calculated
explicitly. This yields explicit upper and lower bounds for each of k* and v*.

Thus the boundary between the two experimentation regimes links x* on the ro*-
axis with * on the Ac?-axis, and lies between the lines r/k, + A/y, = 1/0? and
7/km + N/Ym = 1/0?. Furthermore, given any point (k',4") on the boundary, the set
of points {(K, v) k> psty = pyt > 1} lies within K, (cf. the comparative statics
results in Theorem 5.2 below).

Note that within the L-shaped region {(k,~) : K < k* or v < 7*} there is a potential
trade-off between the discount rate and the switching intensities, given a noise intensity
o: for any r < k*/0?, moderate experimentation can be avoided by A being sufficiently
low, and similarly, for any A < v*/02, moderate experimentation can be avoided by r
being sufficiently low.

4.3 No State Switching (r >0, A =0)

The discounted case with A = 0 is simple since we do not have to make the transfor-
mation from u* to v*, but can work with u* itself. Our next result provides a detailed
characterisation of the optimal experimentation behaviour.

Proposition 4.5 Let A = 0.

In the case of extreme experimentation, the optimal policy is continuous except for
a single jump between Gmax and qmin, and the process of posterior beliefs, if started from
a prior belief in |0, 1, converges to the true state of demand with probability one.

In the case of moderate experimentation, the optimal policy is continuous, and the
process of posterior beliefs exhibits the following long-run behaviour given a prior belief
mo # 0, w, 1 and the true state of demand k: with probability one, beliefs converge to

e Tif0<my<mandk=1, ort <my<1and k=0;

e Oormif 0 <mg<mandk=0;
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e morlifm<my<landk=1.
In particular, there is always a positive probability that beliefs will converge to .

Proor: For u*(7) > m, we obtain the optimal policy exactly as in the proof of
Proposition 4.1. Since u* is strictly convex, its graph crosses R. only once, so this
policy has indeed just one jump.

If w*(7) = m, on the other hand, we have (u*)'(7) = 0 and 7(7)(u*)"(7)/2r =
B(m)[u*(m) — m(m)]/[u*(7) —m] < B(r) on |0, 1[—{7}. For all = # 7, there are £ and
n strictly between 7 and 7 such that [u*(7w) — m]/[m(7) — m] = («*)"(§)/m"({); as
(u*)" is bounded on |0, 1[ —{7}, so is the quotient on the left-hand side. Therefore,
O(m,u*(m)) extends to a Lipschitz continuous policy function which is optimal by the
verification theorem from Section 3.4.

The updating equation (4) shows that the process of posterior beliefs generated by
the optimal policy is a supermartingale if the true state is £ = 0, and a submartingale if
k = 1. Since the process is bounded, this implies almost sure convergence. The stated
long-run behaviour is now established by means of the standard boundary classification
for diffusion processes; cf. Karlin and Taylor (1981, Chapter 15, Sections 6-7). |

The proposition shows that for sufficiently high discount rates, there is a positive
probability that beliefs will settle down at a point where the agent has not learnt the
true state. This is a particular case of the general incomplete learning result obtained
in the literature on optimal learning in an unchanging environment and referred to
after Proposition 4.2. Our setup with continuous time and a one-dimensional state
space makes this result particularly stark: if the prior belief lies on the ‘wrong’ side of
7, moderate experimentation will cause beliefs to converge to 7« with probability one!
Here, exactly as in the case of a changing environment, the monopolist, when choosing
to experiment moderately, effectively reduces the state space to a smaller interval. In
this sense, a ‘local’ decision, how to experiment at or near the belief 7, has drastic
‘global’” consequences.

Finally, note that the case of a changing environment is richer in that it allows for
a form of moderate experimentation where the monopolist experiments much more on
one side of 7 than on the other. This asymmetry reflects the fact that state switch-
ing introduces mean reversion into the updating equation (2), thereby destroying the
martingale property of beliefs; this does not happen when A = 0.

4.4 Maximum Experimentation (r =0, A =0)

For given o, an agent who uses the catching-up criterion in an unchanging environment
clearly has the strongest possible incentive to experiment. Consequently, if extreme
experimentation is to occur at all, it must occur for r = 0 and A = 0. We have seen
above that this is indeed the case. We now derive the optimal policy in a simple closed
form. Recall the construction of the left, central and right rays in Section 3.5, and let
¢ denote the centre of the interval [¢min, Gmax]-

Proposition 4.6 Let r = 0 and A = 0. Let 7, 7. and 7, be the beliefs where the
graph of the full-information pay-off function ™ intersects the left, central and right
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rays, respectively, that is,

W(m) m — %AO& [Qmax - (j] (ﬂ-[ - ﬁ->7
m(m,) m + % Aa[§ — Guin] (7 — 7),
and 9 .
Mo =7 g 4 (m(me) — 1h).

= T —I— _— TN
Aa [qmax - Q] [q - qmin]
Then the policy function q : [0,1] — @ defined by

qm™(m) + () —m(r) [q™(m) —q] for 0<m<my,

m(m)—m

Gmax fOT 7Tg§7'('<7‘(‘c7
q(ﬂ—) - Gmax OT Qmin fO’I" T = T¢,
Gmin for w.<mw<m,,

qm™(m) + () —m(r) [q™(m) —q] for m <m <1,

m(m)—m

which is continuous except for a jump at w., is optimal.

PROOF: ¢ is measurable with [g(m) —¢]* bounded away from zero, hence admissible by
Proposition A.1. Optimality follows from the undiscounted variant of the verification
theorem from Section 3.4 and the fact that g(7) € O(w,m(7)) for 0 < 7w < 1. |

Note that this result holds independently of the value of the parameter o. The
intuition for this is simple. In the absence of state switching, a change in ¢ amounts to
a mere rescaling of the time axis. As the objective of an agent using the catching-up
criterion is invariant to such a rescaling, the optimal policy remains the same.

4.5 Further Findings

Beyond the results reported above, our numerical simulations suggest additional prop-
erties of the adjusted value function and the optimal policy. We discuss them briefly
in this subsection.

First, the adjusted value function appears to be strictly convex even in the extreme
experimentation regime; see for example Figure 3. This implies in particular that the
graph of v* crosses the central ray only once, so extreme experimentation entails just
one jump in the optimal policy function. Theorem 4.1 establishes strict convexity for
moderate experimentation only. It would be desirable to have a general, economically
intuitive proof of this property that does not rely on a detailed (and rather complicated)
investigation of the ODE for v* as in Appendix F. Given that the adjusted value
function for A > 0 satisfies the same boundary conditions as the (true) value function
for A = 0 (both coincide with the myopic pay-off for 7 = 0 and 1), one could for example
try to reinterpret v* as the value function of a transformed optimal experimentation
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problem without state switching, in which case convexity would follow immediately by
standard arguments. So far, we have not been able to make progress in this direction.

Second, granted strict convexity of v*, we also have the strict inequality v* < m
on ]0,1[. This inequality reflects the intuitive fact that the incentive to experiment
is highest for a monopolist who operates in an unchanging environment and does not
discount. Again, a proof based on this intuition would be desirable.

Third, our numerical results suggest that v* is strictly decreasing (on ]0, 1 for ex-
treme experimentation, on |0, 1[ —{7} for moderate experimentation) in each of the
parameters 7, A and . As a consequence, the extent to which the agent experiments,
measured by the distance |¢*(7) — ¢ ()], is strictly decreasing in each of these param-
eters as long as ¢*(7) € {qmin, 4™ (1), 4, ¢™(0), ¢max }- In the extreme experimentation
regime, moreover, the set of beliefs at which ¢.x OT @uin 18 optimal shrinks in response
to an increase in one of the parameters, and is always a subset of |7, 7] as in Proposi-
tion 4.6. The intuition behind these comparative statics is clear. As the discount rate
increases, the future becomes less important to the agent. The value of information
falls, and with it the agent’s willingness to sacrifice current revenue for potential fu-
ture gains from experimentation. A higher level of noise, on the other hand, renders
the price signal less informative, which reduces the expected gain from any given de-
viation from the myopic optimum, and thus the incentive to experiment. Finally, a
higher frequency of state switches increases the risk of information becoming obsolete,
so the trade-off between current revenues and potential gains from experimentation
shifts again in favour of the former. For the moderate experimentation regime, we
can use the techniques of Appendix G to prove analytically that |¢*(7) — ¢ (7)] is
always strictly decreasing on |0, 1[ —{#} in r and o, and strictly decreasing in A in the
undiscounted case (r = 0); cf. the proof of Theorem 5.2 below.

5 No Confounding Belief

We now turn briefly to the simpler case of optimal experimentation when the two
demand curves do not intersect in the interior of )™, and so there is no longer a belief
7 € ]0,1[ such that ¢™(7) = ¢.' That is, we drop the standing assumption made in
Section 3.3, and instead make the following

Assumption The two demand curves do not interest in the range of the myopic pol-
icy function (¢ & Q™), experimentation is informative (AB # 0) and information is

valuable (afy — a1 fy #0).

We continue to assume without loss of generality that the demand curve in state 1 is
steeper than the demand curve in state 0, that is, A > 0. As in Section 3.3, this
new assumption is sufficient for experimentation to occur at almost all beliefs; see the
footnote on page 11.

21To avoid cumbersome case distinctions, we will ignore the border-line cases ¢ = ¢™(0) and § =
q"™ (1) in what follows. It is easy to check, though, that the results given below remain valid in these
two scenarios.
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It turns out that under the new assumption, experimentation is always in one direc-
tion and moderate. That is, the monopolist either always reduces production relative
to the myopic benchmark, or he always expands production, and he never chooses any
quantities outside the range Q™ of the myopic policy function. In particular, the rele-
vant ODE for the adjusted value function will be given by (21), and optimal quantities
by (15).

When » = 0 and A = 0, the optimal policy can again be written down in closed

form:
m(m) — m(m)

q(m) = ¢"(m) + [q" () — d;

m(m) —m
since g(m) = O(mw,m(m)) for 0 < 7 < 1, optimality of this policy function follows
exactly as in the proof of Proposition 4.6. When r > 0 or A > 0, we have the following
theorem.

Theorem 5.1 (Moderate Experimentation, One Direction) Let r > 0 or A >
0. Then the adjusted value function v* satisfies m < v* <™ on |0, 1], and it is analytic,
strictly convex and the unique solution of the ODE (21) subject to the conditions v*(0) =
m(0), v*(1) = m(1), and v* > m everywhere else. The optimal policy function,

7 (m) = () + S ) — ),

is analytic, takes values in Q™ only, and satisfies the following inequalities on |0, 1] :
" <@ <qif < QM and g < g <q"if ¢>Q™.

PROOF: Applying Proposition G.2, we obtain a continuous function v : [0,1] — R
which solves (21) with m < v < on |0, 1[. This function is analytic on ]0, 1[ by the
Cauchy-Kowalewski theorem.

Using the verification theorem from Section 3.6 (and its undiscounted variant), we
see that v = v* and the policy ¢* is optimal. This also establishes the uniqueness part
of the theorem. Moreover, we have (v*)” > 0 on |0, 1[ by Proposition F.1.

The stated inequalities for ¢* follow directly from the fact that m < v* < 7 on
10, 1[. The derivative of the function § is

[¢™(0) — gl lg™ (1) — ] ABp _ [g"(0) — ql[¢™(1) — d]
23(m)? [qm(m) — 4] [g™(7) — q?
as either ¢ < Q™ or ¢ > Q™ this is either strictly positive or strictly negative through-

out and of the same sign as the derivative of ¢"*. As § and ¢™ coincide at either end of
the unit interval, the range of ¢ and hence the range of ¢* equals Q™. [ |

7(m) =-— (q™)'(7);

Thus, experimentation is indeed in one direction for ¢ € Q™: if ¢ lies to the left
of @™, then ¢* > ¢™ on |0, 1[, which means that the agent experiments by increasing
quantity; if, on the other hand, ¢ lies to the right of @™, then ¢* < ¢ on |0, 1], so the
agent experiments by decreasing quantity. The intuition behind this quantity expansion
or reduction is straightforward: the monopolist deviates from the myopic quantity by
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moving away from ¢ and in the (now unambiguously defined) direction of widening
spreads between the two possible demand curves, thus making price observations more
informative.??2 Note also that the process of posterior beliefs is now always regular since
the difference ¢*(7) — ¢, and hence the informativeness of the price signal, is bounded
away from zero.

Convexity of v* turns out to be crucial for the comparative statics of optimal ex-
perimentation, to which we turn next.

Theorem 5.2 Given fixed demand curve parameters g, a1, By, B1 such that ¢ & Q™
and a fized 7, the distance |q*(m) — ¢ (7)| is

e strictly decreasing in r;
e strictly decreasing in o;
o strictly decreasing in A if r =0

for all = € 10, 1].

PROOF: Let v*[r, A, o] denote the adjusted value function for any given combination
of parameters r > 0, A > 0 and o > 0, and let ODE[r, A, o] be the differential equation
(21) for these parameter values.

Consider discount rates r; < ry. Since v*[r;,A,o] > m on |0, 1], the right-hand
side of (21) with v = v*[ry, A, 0] is strictly increasing in r at each = € ]0,1[. Being
a solution of ODE[ry, A, o], v*[r1, A, o] is thus a strict supersolution of ODE[ry, A, o].
(See Appendix G for a definition of supersolution.) As in Proposition G.2, therefore,
there exists a continuous function v : [0,1] — IR which solves ODE[ry, A, o] with
m < v < vr,A o] on]0,1[. As v*[r;,A,o] < ™ on ]0,1[, the uniqueness part of
Theorem 5.1 implies v = v*[ry, A, 0]. The comparative statics result with respect to the
discount rate now follows from the observation that optimal quantities are increasing
in adjusted values.

The other comparative statics results follow in the same way. In fact, since the
second derivative of the adjusted value function is strictly positive on |0, 1[, v*[r, A, o1]
is a strict supersolution of ODE[r, A, oy for o1 < 09, and v*[0, A1, o] is a strict super-

solution of ODE[0, Ay, o] for A1 < As. [ |

The intuition behind these comparative statics results has already been discussed
in Section 4.5.23

221t is less intuitive, though, that experimentation should always be moderate.

23(Clearly, the comparative statics with respect to A should also pertain when r > 0. Our numerical
simulations confirm this conjecture, but we have not been able to provide an analytical proof so far.
Note that by the same argument as in the proof of Theorem 5.2, it would be sufficient to show that

ApB 1 v*(m) —m(m) 4 (r—7) {M}l >0

B(m)| v*(m)—m v¥(m) — M

f(m) + (7 = 7)

on |0, 1[, which is equivalent to (v*)” > (u*)” on the open unit interval. All the numerical solutions
that we have calculated satisfy this condition.
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6 Conclusion

We have studied the behaviour of a monopolist who learns about randomly changing
demand by choosing a stream of quantities, observing the prices they generate, and
updating his beliefs accordingly. As the action space is continuous, a small amount of
information can be obtained at a small opportunity cost. Given the changing environ-
ment, therefore, experimentation will occur even in the long run although, as we have
seen, the scope of actions may become restricted.

We formulated the problem in continuous time, which lead us via the Bellman
equation to an ordinary differential equation for the adjusted value function. The ad-
vantages of this approach are three-fold: (a) key properties of the value function and
optimal policy can be established analytically, as can some comparative statics results,
even though a closed-form solution is generally not obtainable; (b) the sample path
properties of beliefs and optimal actions are easy to characterise; (c) it is straightfor-
ward to solve the differential equation of interest numerically, enabling us to illustrate
the analytical results and suggest further plausible properties of the solution.

Our analysis focused on the most interesting case where the confounding quantity
lies between the myopically optimal quantities for the two possible demand curves. We
found two qualitatively different experimentation regimes. For low discount rates and
low probabilities of a demand curve switch, optimal experimentation is extreme: the
maximal and minimal feasible quantities are chosen a non-negligible fraction of time;
the optimal policy function exhibits a jump from one extreme quantity to the other; and
the true state is tracked fairly well. For high discount rates or high probabilities of a
demand curve switch, on the other hand, experimentation is moderate: the quantities
chosen are bounded away from the extremes; the monopolist behaves like a myopic
agent at the confounding belief; and he eventually restricts his choices to a subset of
the space of feasible quantities.

A transition from one regime to the other in response to a change in the model
parameters involves a discontinuous change of optimal policy. This suggests that agents
in a changing environment may reduce their investment in information drastically if the
frequency of change (or the interest rate) passes a critical threshold. However, there is
a region in which a trade-off between interest rates and stability can be exploited: a
moderately high interest rate need not trigger sluggish investment provided that the
underlying environment is sufficiently stable; conversely, the low-investment effect of a
changing environment can be overcome by a sufficiently low interest rate.

As to the robustness of our results, it is clear that the linearity of demand curves is
inessential: any pair of demand curves with a confounding quantity and a price spread
that increases monotonically as we move further away from the confounding quantity
(at least locally) would lead to the same conclusions. (Also, we could have used price
rather than quantity as the choice variable with the appropriate specification of noise.)

The fact that we allow only two possible demand curves turns out to be more
restrictive. While the discontinuous dependence of optimal policies on the discount
and switching rates does not hinge on this assumption,?* the moderate experimentation

24Tf we consider three linear demand curves, for example, the space of possible posterior beliefs is
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trap can only occur with three or more demand curves if there is again a confounding
quantity, i.e. if they have a common intersection point. In this sense, the trap is not
generic — but then neither are the incomplete learning results of the previous literature
on unchanging environments. The case of two reward functions is worth investigating
since it identifies the circumstances which produce an experimentation trap, and shows
that the mere introduction of state switching is not enough to root out incomplete
learning.

The continuous-time assumption is less crucial. The behaviour of posterior beliefs
under moderate experimentation will be less clear-cut in discrete time, since discrete
adjustments could allow the belief to jump back and forth past the confounding belief.
However, adjustments towards the long-run average state become stronger and more
frequent the further the current belief is away from the long-run average state, so
excursions out of the trap can be expected to be infrequent and short. As we let the
period length shrink, the resulting sample path behaviour will then become very close
to that in our model.

Appendix

A Admissible Strategies and Policy Functions

We first provide a precise definition of the set Q of admissible strategies. Assume that the Brownian
motion Z and the Markov process k are given on some complete probability space and are both
adapted to the filtration {F;}. Let Qg denote the set of all processes q = {¢;:} which take values in
@, the interval of feasible quantities, and are adapted to the aforementioned filtration. Each q € Qg
gives rise to a unique cumulative price process P9. The information contained in prices is summarised
by {F{}, the filtration generated by P2. A process q € Qg is an admissible strategy if q; is adapted
to the filtration {F'}.

Admissible policy functions can now be defined as follows. The function ¢ : [0,1] — @ is an
admissible policy function if for any given initial belief 7o, there is a unique strategy q € Q (with
associated process of beliefs {m;}) such that ¢ = q(m¢) for all ¢t.

The following result provides conditions under which a given policy function is admissible.

Proposition A.1 A policy function q : [0,1] — Q is admissible if at least one of the following
conditions holds:

(a) q is Lipschitz continuous.
(b) q is measurable, and there exists a & > 0 such that [Aa — ABq(7))? > 6 for all 7.
PROOF: Suppose that (a) holds. Then an extension to a standard existence theorem implies that the
stochastic differential equation
dr = {Mm) + 0 S(msa(m) (an, — Brar) — [a(m) = Bra(m)]) | dt
+ X(me, q(me)) dZy (A1)

which is obtained from combining (2) and (3) has a unique solution 7 for any given starting value
7o € [0, 1]; ¢f. Liptser and Shiryayev (1977, p.330).2° Define the strategy q by ¢ = q(m;) and consider

the two-dimensional simplex; along its edges, we are back in a scenario with two demand curves — so
we have the discontinuity.
25This is in fact a strong solution. A weak solution would be enough for our purposes.
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the associated price process dP; = (g, — Ok, @) dt + 0 dZ;. Section 2 implies that the corresponding
process of beliefs T = E[k; | 1] also solves (A.1) with initial value mo. By the uniqueness part of
Liptser and Shiryayev (1977, Theorem 9.2), the processes m and 79 coincide, so 7 is indeed the process
of beliefs associated with the strategy q. The policy function ¢ thus generates a unique strategy in Q.

Now suppose (b). Given any initial value m, Krylov (1980, Theorem 2.6.1) implies that the
stochastic differential equation

d'ﬂ't = )\(ﬂ't) dt —+ E('ﬂ't, q(ﬂ't)) dZt
has a weak solution (7, Z°) with Z° a Wiener process. We extend the corresponding filtered probability

space in such a way that it supports an independent Markov process {k;} taking values in {0, 1} with
transition probabilities as in Section 1. Consider the bounded process

me =07 (o, = Bua(re) = [a(m) = Blma(m)).

By Girsanov’s theorem, there is a new measure under which

t
z:ﬁf/m@
J0

is a Wiener process; cf. Revuz and Yor (1991). In other words, (m,7) is a weak solution to the
stochastic differential equation (A.1). Admissibility of the policy function ¢ is now shown in exactly
the same way as in the first part of this proof. [ |

B Some Properties of the Value Function
Cousider the value function u* as defined in (5).
Proposition B.1 The value function u* is continuous and convez.

ProOF: For fixed q € Q, u? is linear in 7. Indeed,
ud(mr) = 7 Egm {/000 re”"" qi lo, — Br,qt) df}
+ (1 —7) Egy—o {/Ooore” qt [k, — P, a4 df} .
For m =npm + (1 —n) m with 0 <n <1, we therefore have
WS(r) = nu(m) + (1 - ) ud(my)

< put(m) + (1) (m)

by the definition of the value function. Taking the supremum on the left-hand side proves convexity.
A convex function is continuous on the interior of its domain, so we only have to show continuity at
m =0 and 7 = 1. Suppose for example that the value function is not continuous at # = 0. Due to
convexity, this can only mean u*(0) > u*(0+). By definition of the value function, there exists a policy
q € Q such that «9(0) > u*(0+). But then ud(w) > u*(m) for small 7 > 0, which is a contradiction.
The right boundary m = 1 is dealt with in the same way. [ |

Convexity implies the existence of a left-hand derivative D_u* on |0, 1] and a right-hand derivative

Dyu* on [0,1], both being non-decreasing functions, the former left-continuous, the latter right-
continuous, with D_u* < D, u* on their common domain.

Lemma B.1 The one-sided derivatives D_u* and Diu* are bounded.
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PrOOF: We see from the representation of the pay-off function u9 in the previous proof that there is
a constant K > 0 such that |(u?)'(7)| < K for all q € Q and all 7. Now, suppose that (D_u*)(m) <
—K for some belief m; > 0. Then there is a mo < 71 such that u*(m) — u*(me) < —K (m — ma),
ie., u*(mg) > uw*(m) + K (m — ma). By definition of the value function, we can find a strategy
q € Q with u*(m2) > ud(me) > u*(my) + K (m — m2). But then the linearity of 4 implies u%(m) >
ud(me) — K (m1 — ma) > w*(my), which is a contradiction. Using a similar argument for the right-
hand derivative, we obtain —K < D_u* < Diu* < K on |0,1[. Due to left- and right-continuity,
respectively, this also proves that (D_u*)(1) and (D,u*)(0) are bounded in absolute value by K. H

C The Value Function as a Solution of the Bellman
Equation

Proposition C.1 The value function u* has a continuous first derivative on [0,1], and possesses a
locally bounded generalised second derivative ub > 0 such that

@Wwﬂ_mw@n:/m@wmw (C.1)
for all 7y and m5. Moreover,
meax {323, q)us(m) + A(m) (u*) (7) —ru*(7) +r R(m,q)} =0 (C.2)

almost everywhere on |0, 1[.

Proor: Krylov (1980, Theorem 6, p.289) implies that «* has two locally bounded generalised
derivatives, u] and u3. By definition, this means that

/: B(m) uj () dm = — /: & (x) w* () dm
and
/(;1 () us(m) dm = /01 & () u* () dor

for all functions ¢ that are infinitely differentiable and of compact support in ]0,1[. On the other
hand, u* is convex by Proposition B.1. As its left-hand derivative D_u™* is left-continuous and non-
decreasing, one can define a measure g on 10, 1] via plmy,me[ = (D_u*)(me) — (D_u*)(m1). This
measure represents the second derivative of ©* in the sense of a distribution:

/ () () e = / " () di(m)

for every function ¢ that is infinitely differentiable and of compact support in ]0,1[. Moreover, this
property characterises g uniquely; cf. Krylov (1980, p.49). Comparing it with the definition of the
generalised second derivative uj, we conclude that dp = uj dm. In particular,

2

(D_u*)(my) — (D_u*)(m) = / ud(m) dm

Jmy

for all my,m5 €]0,1[. This implies that D_«* is continuous, so u* is continuously differentiable on the
open unit interval with (u*)’ = D_u*. By Proposition B.1, (u*)'(7) has a continuous extension to the
whole of [0, 1].

As to the last part of the proposition, Krylov (1980, Theorem 6, p.289) implies that

max {4 S3(r,q) w(r) + Am)ui(m) = o (m) + 7 R(x, )} = 0

holds almost everywhere on ]0,1[. The proof is completed by replacing uj with (u*)’. [ |

The representation (C.1) implies
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Corollary C.1 u* is almost everywhere twice differentiable, and (u*)" = u} almost everywhere.
Moreover, u* is twice continuously differentiable on any open set where ub has a continuous version,
i.e., coincides with a continuous function almost everywhere.

Applying (C.2) with ¢ = ¢™(7) and dividing through by 7, we see immediately that
u*) (m
u*(m) — A(W)M > m(m)
r
almost everywhere. By continuity of u* and (u*)’, we can conclude that this inequality holds in fact

on the whole of [0,1]. As to the boundary of the unit interval, we have the following result.

Corollary C.2 The value function satisfies the boundary conditions
*\/ )
w*(0) — ,\(0)% = m(0),
*)' (1
wr (1) - A,

r

Proor: We first note that (C.2) implies

1 max Y2(m,q) ub(m) + M) (u*) (1) — ru*(7) +rm(7) >0

and hence

. 2ra?  wr(m) — M) (w*) (7)/r — m(T)
uy(m) > — 5
m2(1—m) maxgeq [Aa — A q]
for almost all 7. Now suppose that u*(0) — A(0)(u*)’(0)/r > m(0). Using the continuity of u*(m) —

() (u*) () /r and the inequality just derived, we can find K > 0 and € > 0 such that u3(7) > K72
almost everywhere on [0, €]. But then

€ “d 1 1
Y = ) - [T de< ey -k [ F -k [2-7] — -
J T JTr S E
as m — 0, which contradicts the boundedness of (u*)’. The boundary condition at 7 = 1 follows by
the same argument. [ |

The next result is a so-called wverification theorem, providing sufficient conditions for a given
solution of the Bellman equation to be the value function, and for a given policy function to be
optimal or e-optimal.

Proposition C.2 Let u be a once continuously differentiable function on [0,1] with a generalised
second derivative ug > 0 on |0, 1] such that

T2

o' (o) —u(m) = / ug () dm

Jy

2

for all 1y and 7o, and 72 (1 — 7)?ua(m) — 0 as ® — 0 and ™ — 1, respectively. If

max {3 2%(m, q)ua(m) + A(m) ! (m) — ru(m) +rR(m,q)} =0

on 10, 1], then the following statements hold true:
(a) u(m) > ud(m) for allq € Q and all w, that is, u > u*.
(b) Lete>0. If q:[0,1] — Q is an admissible policy function satisfying
1937, q(m)) ua(m) + A(w) o/ (7) — ru(m) +r R(m, q(m)) > —er (C.3)

for all w, then the strateqy q, obtained by following this policy from any given initial belief
is e-optimal, i.e., ud(m) > u(mw) — €. In particular, u* > u — €.
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(c¢) If there is an admissible policy function as in (b) for any € > 0, then u is the value function:
u=u".

(d) If ¢* : [0,1] — @ is an admissible policy function such that for every m, the quantity q*(m)
attains the supremum in (C.2), then this policy function is optimal. For any ,

u(m) = u* (1) = max ud(r) = ud~(x)
qeQ

where g is the strategy obtained by following this policy from the initial belief 7.

PRrROOF: Let the initial belief be my = 7. For an arbitrary strategy q € O consider the stochastic
process M9 given by

T
M3 :/ re " R(me,qp)dt + e u(my).
0
By a generalisation of It0’s lemma,

Mg o= g

T

+ [ e {38 aualm) + Ml m) = ) + v B, a0} d
0

T
+o ! / e " (1 — ) (Aa — AB q;) dZ;
Jo

cf. Rogers and Williams (1987, Lemma IV.45.9, p.105). Now, (C.2) implies that the expression under
the first integral is non-positive, so M9 is a supermartingale. In other words, E.[M#] < Mg or

T
u(m) > E; / re "t R(m,qr) dt| +e "1 Exfu(rr)].
Jo

Letting T' go to infinity, we see that the first term on the right hand side becomes u%(w), while the
second term tends to zero. This proves part (a). Next, let € > 0, and consider a policy function
q:[0,1] — @ satisfying (C.3) on the whole of its domain. If q is the strategy obtained by following
this policy from the initial belief 7, then

T
E-[M?] > Mg — ¢ / re "tdt.
Jo

Letting T — oo yields u%(w) > u(m) — €. Parts (b), (¢) and (d) follow immediately. |

D Analysing the Bellman Equation
In Section 3.4 of the main text we initially rewrote the Bellman equation in the form
= s[qg—q)* + R(r,
v=max{7(r)s[q— g + R(r,q)}

where the variable v is standing in for u(m) — A(m)u/(7)/r and s is representing u”(7)/2r. The first
task here is to show that this problem can be reformulated as

. v—R(m,q)
T(m)s = min ———=—>
9cQ—{ay [q—q]

for triplets (m,v,s) with s > 0 and (m,v) lying in the set

A={(m,v) €]0,1[ xIR: v >m(r) and v > 1h}.
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(As noted in the main text, the condition v > 7 only bites if ¢ lies in the interior of @™, in which
case it rules out exactly the point (7,7), which in turn excludes the possibility of ¢ being optimal.)
To derive the reformulation, define the functions

Blr,v,s,q) = 7(7)slqg— 4> + R(m,q) —v

and
* 3 —_— P> 3
B*[m,v,s] = max Bm, v, s, ql,
qeqQ
and rewrite the Bellman equation as

B*[m,v,s] = 0.

Then, for all triplets (7, v,s) with s > 0 and (7,v) € A, the equation B*[r,v,s] = 0 is equivalent to
maxgeq— {41 BT, v,5,q] = 0. Now, we have [q — ¢]? > 0 on Q — {G}, so max,eq_qqy Blm,v,5,q] =0 if
and only if
Blm,v,s
max [’77A;q] =0,
9eQ—{a} [q—q]
which in turn is equivalent to
v — R(m,
T(m)s = min 7(%(])
9€Q-{ay [q—q]
Moreover, a quantity ¢* € @ —{} satisfies B[, v, s,q*| = B*[m,v, s] = 0 if and only if (D.1) holds and
q* minimises [v — R(7,q)]/[q — ¢]*>. Thus, the original problem and its reformulation are equivalent
on A.
Next we shall prove the claim made in Section 3.5 that, when ¢ lies in the interior of the interval
@™, the area A can be divided into four sub-regions by the following rays emanating from (7, 7h):

(D.1)

Ry = {(77,1}) G.A:v:mf%Aa[qmaxf(ﬂ(ﬂffr)},
{(r0) € Ao = i+ L A (g — guin] (7 — 1)}

. A l Qqu 2
{(71’,1}) cA:mr="7+ At e — 411 = gouie] (v m)},

b
I

&
I

the sub-regions being associated with cases in which the above optimisation problems have interior or
corner solutions.
Before proceeding, we use equation (9) to replace R(m,q) in the optimisation problems to obtain

v = m() = mage {(x) slg — @ ~ Am) la — 4" ()} (D2)

and its reformulation

T(m)s = min { (D.3)

q€Q—1{4q}

B(r) [q — ¢™(m)]? + v(r) — m(r)
lq —q]? '

We first provide a preliminary lemma showing the regions of A where the appropriate second
order condition for the above equivalent problems is satisfied. Note that the relationships m(mw) =
m+ B(r) [¢™() — ¢ and B(n) [¢™(x) — §] = —3 A (m — ) are used in a number of the algebraic
manipulations.

Lemma D.1 Let G lie in the interior of Q™. For (m,v,s) € AX IR+, the second order condition for
the minimisation problem in (D.3) is satisfied if and only if (w,v) lies below Ray or below Ra,., where

Roe ={(m,v) € A:v =" — At [qmax — §] (T — 7)}

and
Ror ={(m,v) € A:v =1+ Aa[§— quin] (T —7)}.
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PRrROOF: The second order condition for the minimisation problem in (D.3) is satisfied wherever the
second order condition for the maximisation problem in (D.2) is satisfied, and it is clear from (D.2)
that the latter holds if and only if 7(7) s — (m) < 0.

Using the inequality v < m — Aa [gmax — ¢] (7 — @) in (D.2) leads, after some manipulation, to

{Iﬂe%{[T(W)S — A(m)] g — > = 26(7) [q™ (1) — 4] [amax — al} <0

Evaluating the maximand at ¢ = quax gives us [7(m) s — 3(7)] [qmax — §]? < 0 and so 7(7) s — B(7) < 0.
On the other hand, using the inequality v > m — A [qmax — §] (7 — @) for 7 < 7 we arrive at

max {r(r) s — A(m)] lg = 4> = 28(0) [4" (%) = ) [amax — a1} 2 0.

The term 26(7) [¢™(7) — ] [gmax — ¢ 18 non-negative for 7 < 7 so in this case 7(7) s — () > 0.
This proves the assertion concerning Rop. The case for Ro,. is proved in the same way simply by
replacing qumax by qmin and @ < @ by ™ > 7.

The next lemma shows that the above optimisation problems have an interior solution if and only
if (m,v) lies below Ry or below R,

Lemma D.2 Let G lie in the interior of Q™. For (w,v,s) € A X IRy, the minimisation problem in
(D.3) has an interior solution if and only if (m,v) € Aipte U Aing,-, where

Aint.e = {(m,0) € A1 v <1 — 3 A [grmax — 4] (T — 7)}

and
At = {(m,v) € A1 v <+ L Aa[§ — Guin] (T —7) }

Moreover, the minimising quantity is given by

v(m) — m(m)

q" () + [g" (7) = d]

m(m) —1m
and the corresponding minimum is
v(m) — m(m)

B(m)

o(m) — 1

PRroOOF: In light of the preceding lemma, the minimisation problem in (D.3) has an interior solution
if and only if the first order condition is satisfied when (7, v) lies below Rg, or below Rs,.. Note that
Aint,¢ lies below Rop and Ajy .- lies below Ra,..

The first order condition for the minimisation problem in (D.3) is satisfied by the quantity

v —m(m)

pm) lg™(w) — 4] -

q=q"(m)+ (D.4)

In the borderline cases, this first order condition holds for ¢ = gmax OF ¢min. With ¢f denoting either
Qmax O Qmin this can be characterised by

v —m(m)

Bm) lg™(m) =4

¢'=q"(m) +
and rearranged to give
v=m(r)+B(m) [¢"(7) = 4] [qmax — ¢ (m)] > m(7) iff T <7

and
v = m(m) = Br) [ () — 8] [ (7) = Guin] > m(x) 7> 7
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where the inequalities are obvious if one notes that ¢™(m) — ¢ has the opposite sign to 7 — #.26 We
have the alternative formulations

v =1 — 5 A [qrmax — 4] (T — 7)
and
v =1+ % Aa [§ — Gmin] (T — 7).

Now, the first order condition holds for some q € |qmin, Gmax| if and only if
v —m(m)
A(m) [q™(m) = q

the first inequality is equivalent to (m,v) € Ay, and the second to (m,v) € Ajyg o
The expression given for the minimising quantity is simply a manipulation of the right-hand side
of (D.4), which when substituted into (D.3) yields the expression for the corresponding minimum.

(Qmin < (]m(ﬂ') + } < Qmax;

Finally, we show that the optimisation problems have the unique corner solution g,., if (,v) lies
on or above R, but to the left of R, and the unique corner solution gu;, if (7, v) lies on or above R,
but to the right of R; for (m,v) € R, both corner solutions are optimal.

Lemma D.3 Let G lie in the interior of Q™. For (w,v,s) € A X IRy, the minimisation problem in
(D.3) has the corner solution quax if and only if (7,v) € Amax U R, and the corner solution qui, if
and only if (m,v) € Apin U Re, where

Amax = {(W,v) cA: v>m— %Aa [Gmax — 4] (T — 7)

~ 2 dc — (j ~
and ™ <R+ — —— (v —1n)
Aa [qmax - (]] [q - qlnin] }

and

Amin{(ﬂav)eA: U2ﬁ7’+%AO‘[(j*Qmin](ﬂ—*ﬁ—)

L2 —q .
and ™>7 + — ch Aq (v—m) ;.
Aa [Qmax - (]] [(] - qmin]
PRrROOF: In light of the previous lemma, we know that corner solutions will prevail in the sub-regions
under consideration. Also, it is easy to see from the alternative parameterisation of the central ray,
namely

[qmax - Cj] [qu qmin] (7T N ﬁ')
Gec — 4
for q. # ¢, where q. = % (qmin + @max), that R lies between R, and R,..
In this region, the borderline case arises when guax and gumin are both optimal and give the same
value of 7(m) s in (D.3). This is the case if and only if
B(m) [gmas — " (@ + 0 = m(m) _ B) [guin — " ()] + 0 = m(r)
[Qmax - (ﬂQ

and simplification leads to

v:er%Aa

[qmin - (ﬂ 2

=+ i ch_A(j
Aa [Qmax - (I] [q - qmin]

(v—1n) .

Thus both extreme quantities are optimal for (7, v) € R..
It follows immediately that gmax is uniquely optimal for (7,v) € Amax, to the left of R., and gmin
is uniquely optimal for (m,v) € A, to the right of R..

26Using these two inequalities, it is easy to see that R, cuts the axis 7 = 0 above m(0), and that
R, cuts the vertical line m = 1 above m(1).
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E The Undiscounted Case

In the absence of discounting, the monopolist uses the catching-up criterion to choose amongst ad-
missible strategies: given a prior belief 7, he looks for a strategy q* € Q which, in the long run, does
at least as well as any other strategy in the sense that liminfr o E-[RF — RF] > 0 for all g € Q,
where

T
RqT :/ a [(og, — Br,qe) dt + odZi]
0

is the process of cumulative revenues. The agent achieves this goal by maximising the transient pay-
off, that is, total expected revenue net of the highest possible long-run average pay-off. Indeed, it can
be shown that a strategy which achieves the maximum transient pay-off is catching-up optimal.

E.1 No State Switching (r =0, A =0)

Let A = 0, so the state of demand is fixed over time. Then, the monopolist can achieve a long-
run average pay-off arbitrarily close to the full-information pay-off, that is, m(0) if the true state
is k = 0, and m(1) if the true state is k = 1. In fact, it suffices to follow any admissible policy
which coincides with the myopic policy ¢™ for beliefs close to 0 and 1, and is bounded away from the
confounding quantity § in case the latter lies in the interior of @™, the range of the myopic policy. By
the martingale convergence theorem and the standard boundary classification for diffusion processes,
beliefs will converge to the truth with probability one,?” and the quantity chosen will approach the
quantity which is optimal for the true demand. Given the initial belief 7, the agent’s objective is
therefore to maximise the transient pay-off

() =B | [ (b0 = mti ]

where k is the unknown state of demand. By the law of iterated expectations,

wi(7) = B, { /O TR, q1) — ()] dt}

where
m(m) =7m(1l) + (1 —m) m(0)

is the ex ante full-information pay-off.
Standard results imply that the value function u*(m) = supge o u4(m) solves the Bellman equation

max {$3%(m, q) " (x) —=m(7) + R(m,q)} =0 (E.1)

subject to the boundary conditions u(0) = u(1) = 0. Moreover, if a function u solves (E.1) with these
boundary conditions, and there is an admissible policy function ¢ : [0, 1] — @ such that

q(m) € arg max {2 %%, q)u" () —m(7) + R(r,q)} (E.2)

for all 7, then © = u* and the given policy is optimal.

In view of the results of Section 3.4, property (E.2) is equivalent to g(7) € O(w,m(m)). Moreover,
the affine function m trivially solves the ODE (20) for » = 0 and A = 0 with m(0) = m(0) and
m(1l) = m(1l) as boundary values. We can therefore simply define the adjusted value function as
= .

2TWe are assuming here that the agent does not assign prior probability zero to the true state. See
Karlin and Taylor (1981) for the classification of boundary points.
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E.2 State Switching (r =0, A > 0)

We now assume A > 0. Let 6* be the highest long-run average pay-off achievable with a strategy
q € Q. According to the introductory remarks to this section, the monopolist’s objective is then to
maximise

wl(r) = By Mm[zz(kt, a) — 0°] dt} ~E, [/Ooo[zz(m,qt) — 0] dt

the transient pay-off as measured against the benchmark 6*.
It can be shown that 0* and the value function u*(7) = supye o u4(m) solve the Bellman equation

mag{% S2(m,q) u (7) + A(m) o/ (1) — 6 + R(m,q)} = 0 (E.3)
q€

almost everywhere subject to the boundary conditions 6 — A(0) %/ (0) = m(0) and 6 — X(1)v/(1) =
m(1).2% Conversely, if a real number 6 and a function u solve (E.3) with the stated boundary condi-
tions, and there is an admissible policy function ¢ : [0, 1] — @ such that

q(m) € arg max {13%(m,q) v (7) + A(m) W/ (7) — 0+ R(m,q) } (E.4)

for all m, then 6 = 6*, u is the value function up to a constant of integration, and the given policy is
optimal.

Given the above boundary conditions and the fact that (E.4) is equivalent to g(7) € O(w,0 —
A(m) w/(m)), we define the adjusted value function by v*(7) = 0* — A(7) (u*)' (7). As the analysis in
Appendix D remains valid for » = 0 with v now standing for @ — A(7)u/ () and s representing v’ (7)/2,
we can argue as in Section 3.6, and show that this v* is indeed a solution (with the caveats stated

there) of the ODE (20) for 7 = 0 and A > 0.

F Convexity of the Adjusted Value Function

Fix # €]0,1[, A > 0and r > 0. For k > 0, let wy, : ]0,1[ —{7} — IR be the function defined implicitly
by the equation

G(m,wy(n)) = kr(n) |x —7|7277/A
with G given in equation (13). Then we have the following facts:
e wj > m, with equality at 7 = 0 and 1, and a strict inequality everywhere else;
e wj has a pole at m = T7;
o wi(m) > 0 unless (7, wg(m)) € Re (see Lemma F.2 below);
o rG(m,wi(m)) + A {f(7) G(m,wi(m)) + (7 — 7) LG (m,wi(m))} = 0 for all 7w # 7.

This last property explains our interest in the family of functions wg. In fact, since %G(mv(ﬂ)) is
strictly increasing in v'(7), we have the following characterisation for the curvature of v* on the set
{m:v*(m) > m(m)}.?

Lemma F.1 Let 7 be such that v*(m) > m(w) and (7,v*(7)) € Re. Then (v*)"(w) >0 if m =7. If
m £ T, let w be that function wy, which coincides with v* at w. Then (v*)" () > 0 if and only if either
m <7 and (v*)(m) <w'(m), or ™ > 7 and (v*)'(7) > w' ().

28Moreover, u* possesses the same regularity properties as the value function in the discounted case;
arguments similar to those given in Appendices B and C apply. The discussion in Sections 3.2 and
3.3 regarding conditions for experimentation and the confounding quantity carries over as well.

P Note that if v*(7) = m(m) with 7 # #, then trivially (v*)”(7) > 0 since m” (7) > 0.
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PRrROOF: This follows directly from the fact that v* solves the ODE (20) at 7. [

We shall use this to prove that the adjusted value function is strictly convex whenever experimen-
tation is moderate.

Proposition F.1 If § is not in the interior of Q™, then (v*)” >0 on |0, 1][.

PROOF: Suppose that (v*)”(77) < 0 with 0 < 77 < 1; without loss of generality, we assume that
7t < #. Let kt > 0 be such that the function w’ = wy+ coincides with v* at «f. By the above lemma,
(v*)(xt) > (w) (xT). Now, the strict convexity of the functions wy implies that (v*)/ () > w} ()
for 7 < 7' sufficiently close to 7t and k < k' sufficiently close to kf. So (v*)" is strictly negative
immediately to the left of 77. On the other hand, v* cannot be strictly concave on the whole of 0, 7]
since this would imply (v*)" > w’ on ]0,7'[ and hence v*(0) < wf(0) = m(0). Therefore, there must
be positive 7 < 7t such that (v*)”(7) = 0 again; let ¥ be the biggest such 7, and w¥ that function wy,
which is tangent to v* at 7. On [r¥, 7f], w? and w' are strictly convex, while v* is strictly concave.
This implies w#(7¥) < wf(7¥) and w¥(xT) > wi(xT), so w' and w’ must intersect somewhere on
7, 7~ a contradiction. The same argument can be used to the right of 7. |

Proposition F.2 Suppose that § lies in the interior of Q™ and v*() = m. Then v* is strictly
convex with (v*)" > 0 on |0,1] —{#}, and at most one of the one-sided derivatives (D_v*)(7t) and
(Div*)(7t) can be different from zero. In fact, if # < @, then (Div*)(7) = 0 and (D_v*)(7) <
0; and if # > 7, then (D_v*)(7) = 0 and (Dyv*)(7) > 0. If v* is differentiable at 7, then the
ratio [v*(m) — m]/[m(m) — m] converges to a finite limit as # — 7. If v* has a kink at T, then
[v*(m) — 1] /[m(m) — 1] converges to a finite limit as m approaches @t from the direction of 7.

PrOOF: We first convince ourselves that we can assume ¢, = ¢ without loss of generality. In fact,
suppose we have shown the stated properties for the adjusted value function v* in this particular case.
Then strict convexity of v* implies that v* < 7, on |0, 7[ and v* < ™, on |7, 1[ with 7, and 7, being
the functions whose graphs are the straight lines joining the point (#,7) with the points (0,m(0))
and (1,m(1)), respectively. In particular, the graph of v* lies entirely in the closure of Ajpt o U Ajpt -
Arguing exactly as in the proof of Proposition 4.2, we see that v* is the adjusted value function for
any Gmax and gmin such that [gmin, gmax) 2 Q™. So we have the stated properties of the adjusted value
function for q. # ¢ as well.

Suppose therefore that q. = ¢, implying that the central ray R. is vertical. This simplifies the
following analysis since it rules out intersections between the graph of v* and R, so we do not have
to worry about the ‘break’ in (20) along R..

Below, we will make repeated use of the following observation:

(v*)(7) = 2A (7 — 7)G(7,v* (7)) /7 () is continuous on [0, 1]. (F.1)

In fact, the definition of the adjusted value function in (19) and the ODE (14) together with its
undiscounted variant imply that this expression equals (1 + A/r)(uw*)'(7) if » > 0, and A(u*)'(7)
otherwise. So (F.1) follows from continuity of (u*)’.

We can now turn to the proof of convexity of v*. For the sake of concreteness, we assume that
o < 7. Again, this is without loss of generality, since we could always relabel the demand curves.

We consider the subinterval left of 7 first. Suppose that (v*)” < 0 on ]0,7[. For any 7 in this
interval, the function wy, that satisfies wy,(7) = v*(7) must then have wj (7) < (v*)’(7) by the above
lemma. In fact, the equality wj(m) = (v*)'(7) is precluded since it would imply convexity of v*
immediately to the right of 7. But wj (7) < (v*)'(7) cannot hold on the whole of |0, 7| either: once
wy, has crossed v* from above it has to cross it from below later so as to reach the value wy (%) > 7.
Thus, we must have inf{r € ]0,7[: (v*)”(7) > 0} < #. The same argument as in the previous proof
now shows that this infimum is 0.

Arguing once more as in the previous proof, we also see that (v*)” > 0 on |7,1[. Now let
7l = inf{m > & : (v*)"(7) > 0}. We know that (v*)"”(%) > 0, so # < 7' < #. Suppose i > #.
Arguing again as in the previous proof, we can show that (v*)” < 0 immediately to the left of 7f;
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moreover, (v*)” must be negative on the whole of &, 71[ since the existence of a 7¥ in this interval
with (v*)”(7%) > 0 would lead to a contradiction. Thus, the one-sided derivatives of v* at # are
well defined, and we have (D_v*)(7) < 0 and (Dyv*)(7) > 0 since v* > m, m/(7) = 0 and v* is
strictly concave immediately to the right of 7. In view of (F.1), we conclude that G(w,v*(m)) has
one-sided limits at & with limz_z_ G(m,v*(7)) > limy_ 4 G(m,v*(7)). The explicit representation
for G in (16)(18) shows that these limits lie in the interval [0, 5(7)]. However, (Dyv*)(7) > 0 implies
limg— 24 G(m,v* (7)) = B(7) and hence lim;_»_ G(m,v*(7)) > B(7) — a contradiction. Therefore
7t =4 and (v*)” > 0 on the whole of ]0,1[ —{#}. Moreover, we have shown that (D, v*)(#) = 0.

The left-hand derivative (D_v*)(7) exists also and is non-positive. (F.1) therefore implies the
existence of one-sided limits lim, 5 G(m,v*(7)) > lim;_ 44 G(m,v*(m)) in the interval [0, 3(7)], the
inequality being strict iff (D_v*)(7) < 0. Having established convexity of v*, we also know that its
graph lies entirely in the region associated with interior quantities. So the relevant expression for the
function G is G(m,v) = p(m)[v — m(m)]/[v — m]. We can now prove the rest of the proposition.

If (D_v*)(7t) < 0, then limg— 74 G(m,v*(7)) < limy—#_ G(m,v*(7)) = B(7) where the equality
follows by L’Hopital’s rule. Since [v — m]/[m(7) — m] = B(w)/[B(x) — G(w,v)], this proves that
[v*(m) — 1] /[m(7) — 17] tends to a finite limit as 7 — T+.

If (D_v*)(7) = 0, on the other hand, then G(m,v*(m)) approaches the same limit from both
sides of #. If this limit is strictly smaller than 3(#), then the quotient [v*(7) — m]/[m(7) — 1]
converges to a finite limit as m — 7 (cf. the expression for this quotient given in previous paragraph).
Suppose therefore that lim,_ G(m,v*(7)) = B(7), hence lim,_z[v*(7) — m]/[m(7) — 1] = +oo. If
(d/dm)G(m,v* (7)) stays bounded above in a neighbourhood of #, then (v*)” also remains bounded
because of ODE (20); but then the mean value theorem implies that the quotient [v* (m)—m]/[m(7)—1h]
stays bounded as well. So (d/dm)G(m,v*(7)) must be unbounded above as 7 approaches 7. Given
that # < 7@, (20) now implies that (v*)” is unbounded below — a contradiction to convexity. |

We still have to show that the functions wy, are themselves convex.

Lemma F.2 Fork > 0, the function wy, is strictly convez at all™ € 10, 1] —{7} such that (7, wy (7)) &
Re.

PrOOF: We fix a k > 0 and simply write w for the corresponding function wy.
We first consider 7 such that (7, w(m)) lies in one of the regions associated with an interior
quantity. It is straightforward to show that in these regions, w satisfies the first-order ODE

iy wlm) = B
w'(m) = () 1 [m/(m) — K(m) (w(m) — m(m))]
with 24r/h AR 2(1—27)
+r — 27
K(n) = - )
() T—T + B(r) w1l —m)
Differentiating both sides and using the ODE to replace w’(7), we find that w” () is a quadratic in
w(m) — m(m) multiplied by a positive factor:

w” = [a(w—m)*+b(w—m)+c|d

with
a = 2K,
b = (K%*—K')(m—1m)—2Knm/,
¢ = (m—m)ym”,
d = (w—m)/(m—m)?

where we have suppressed the dependence of the functions K, m and w on w. Clearly a > 0 and,

since m > 1 and m is convex, we also have ¢ > 0. Thus, if b > 0, then w” > 0 and we are done.
Suppose therefore that b < 0. We have to show that the above quadratic in w — m has no real

roots. This is the same as showing b? —4ac < 0, or equivalently (b+2/ac)(b—2+/ac) < 0. Since we are
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dealing with the case b < 0, the second factor is negative, so all we have to show is that b+ 2y/ac > 0,
i.e.,
(K? — K')(m —m) — 2Km’ + 2¢/2K2(m — m)m” > 0
when (K2 — K')(m — 1) — 2Km' < 0.
First, we can show that K2 — K’ > 0. Indeed, K? — K’ = [(r/A)? + (r/A) f1 + 2f2] /(7 — 7)? with

film) = A7 —m)[(1 —7) (Bo + B(7)) + (1 — 7)o + B(m)]
+ (1= #) [ (B + B()) + 71 + B}/ {r(1 — m)B(m)}
and
(Boit(1 — )2 + B (1 — 7)72)? + 27 (1 — #)m(1 — 7)B(r)?
(m(1—m)B(m))*
which are positive by inspection. This leads to the further simplification that the only case we need

consider is when K'm’ > 0.
It will be more convenient to rewrite m(m) and its derivatives in terms of ¢™(7) and ¢ as follows:

fa(m) =

~ m N2 / m/.m ~ " Aﬁ2 m 2
m—1m=pF(q"—-q)°, m' = -Apq™ (¢" —q), m :W(Qq —q)

where again we have suppressed the dependence of the functions 3, m and ¢™ on w. Having made
these substitutions, the expression which we wish to show is positive becomes

B(K? = K')(q™ —@)° +2A8 {Kq™ (¢™ —§) + |K||g™ — d||2¢™ — 4|},

and we need consider only the case when K (¢™ — §) < 0.
Case 1: K <0, g™ — ¢ > 0. The expression in braces becomes

—[K[q™ (¢" =) + K| (" =) (24" — @) = |K| (¢" —d)?,

so we are done.
Case 2: K > 0, ¢™ — ¢ < 0. This time the expression in braces becomes

—Kq" g™ — 4|+ K |¢" — | 12¢™ — 4| = K |[¢™ — 4| (12¢™ — 4| —q™),

and we have two subcases.
Case 2i: 2¢™ > §. The above expression becomes

Klg™ —ql(2¢" —4—q") = —K (¢" —§)*
and the whole expression which we wish to show is positive becomes
B =K (q" = @)" = 288K (¢" —)° = [3(K* ~ K') 203 K] (4" — 9)*.
Case 2ii: 2¢™ < §. Now the expression for Case 2 becomes
Klq™ —ql(=2¢" +4—q") = K(G—q") (G- 34")

and the whole expression which we wish to show is positive becomes

m

g )
B(K* - K') +2AﬁK% (" —4)*.
q—dq
But ¢™ — ¢ < 0 and 2¢™ < ¢ imply that (§ — 3¢™)/(§ — ¢™) > —1, and so the above expression is

greater than
[8(K* — K') =283 K] (4" — q)°

which is just the expression that we found in Case 2i.
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Therefore, Case 2 comes down to showing that the term in square brackets is positive. In fact, it
can be written as

26(m) [F2(1—m)t+ (1 — 7?7t + 27(1 — 7)w (1 — ) (L + (1 — m))]
m2(1 —m)2(m —7)2
Bm)(r/A)[7(1—-m)(1+3(1—m))+ (1 —7)m (1 + 3m)]
(1l —m)(m —7)2

+

p)(r/A)?

(m—7)?

which is positive by inspection. Thus w”(7) > 0 in the regions associated with interior solutions.

We still have to consider 7 such that (7, w(7)) lies in a region associated with exactly one of the
extreme quantities. This quantity, which can be ecither ¢uax O Gmin, Will be denoted by ¢f. It is
straightforward to show that in such a region, w satisfies

w'(m) = q' (Ao — ABq") — L(n) (w(r) — R(m,q"))

with

_2+47r/A 2(1-2m)
-7 7(l—m)’

L(r)

and that
w”(m) = [L*(7) — L' ()] (w(m) — R(w,q")) .
As w(m) > R(m,q") by construction, we only have to show that L? — L’ > (. This follows from the
representation L2 — L' = [(r/A)? + (r/A)g1 + 2g2]/(m — )% where
F1-m) 31 —m) + 1]+ (1 —#)7 3 + 1]
m(l—m)

g1(m) =

and
~ _ 2 _ = 2 2 ~ _ = _
92( ) ( (1 ”) (1 ;2)51 ) )22; (1 7 ); (1 7 )

are clearly positive; this representation is obtained by setting AS = 0 in the above expression for
K?* - K’ |

G Two-Point Boundary Value Problems

Consider a second-order differential equation of the form
(1 —7)*0" = Flr, 0,0 (G.1)

on some open interval I = |mg,m,.[ C ]0,1[. We are interested in finding a solution to this ODE which
assumes prespecified values at the two boundary points of the interval.

The existence theorem presented below requires the concept of a sub- or supersolution to this
ODE. Let v be a real-valued continuous function on I = [rg, 7] with a continuous first derivative on
I. Define functions Dv', Dv’ : I — IR U {00} by

v'(m+h) — v (7 — h)

, .V (m4h) = (T —h) -, o
(DV')(m) = hgn_}élf o ,  (Dv)(m) = llI}ILl:Blp T .

(Note that for twice differentiable v, the functions Dv’ and Dv’ coincide with v”.) The function v
is called a subsolution of the ODE (G.1) if 72(1 — 7)2 Dv' > Flm,v,v’] on I. Similarly, v is called a
supersolution if 72(1 — 7)2 Dv' < F[m,v,v'] on I. We speak of a strict subsolution or supersolution if
the respective inequality is strict on 1.

Fix functions v,7 : T — IR satisfying v < T on 1. Given any subinterval J C T, we say that the
function F' on the right-hand side of (G.1) is regular on J with respect to v and U if it is continuous
on Dy = {(m,vo,v1) € J x Rx IR :v(m) <wvo <T(m)} and there is a constant C'; depending only on
J such that |F[m,vg,v1]| < Cy (1 + |v1]) on Dy.
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Proposition G.1 Let 0 < 7y < 7, < 1. Assume that v : T — IR is a subsolution of (G.1),7:1 — IR
a supersolution, and v < . If F is reqular with respect to v and © on I = [my,m,], then for any
ve € [u(me), ()] and v, € [v(m,),D(m,)], there is a continuous function v : I — IR which solves (G.1)
on I with v < v < 7T and satisfies the boundary conditions v(mwy) = vy and v(mw,) = v,.. Moreover, if v
is a strict subsolution, then v > v on I, and if U is a strict supersolution, then v <v on I.

ProOOF: The existence of such a solution v follows directly from Bernfeld and Lakshmikantham
(1974, Theorem 1.5.1). Now assume that v is a strict subsolution and that there is a belief 7 € T
such that v(#) = v(#). Then the function v — v has a local minimum at 7, so v’(7) = v/(%) and

o/(8) > (Dar)(F). Yet #2(1 = )2 ') = Pl ol (R)] = Pl 2. (0] < #201= )7 (D))

— a contradiction. The case of a strict supersolution 7 is dealt with in the same way.

We will need the following corollary of this result.

Corollary G.1 Given m; < m, < mp in |0, 1], consider the ODEs
72(1 —m)% 0" = Fyr,v,7] (G.2)

on |me, we| and
21 — 1) 0" = Fu[m,v,0] (G.3)

on e, mp]. Let v, : [me, 7] — IR be a subsolution of (G.2), Uy : [me, 7] — IR a supersolution of (G.2),
v, : [T, m] — IR a subsolution of (G.3) and U, : [me,m.] — IR a supersolution of (G.3) such that
v < Vg, U, < Uy, 0p(Te) = 0, (Te) < Te(Te) = Vp(e), 0p(Te—) < 05 (Tet) and Uy(me—) > Ty (Tet).
Assume that Fy is regular with respect to v, and Ty on each closed interval contained in |mp, 7], and
E,. is reqular with respect to v, and T, on each closed interval contained in [w.,m.[. Then there is a
differentiable function v : |me,m.[ — IR which solves (G.2) on |me,mc[ and (G.3) on |me, | such that
v, < v <Tp on|mp, ] and v, < v < Ty, on [Te, Tr[.

PrOOF: Piecing together v,, v, and vy, T, in the obvious way, we get continuous functions v, :
[me, 7] — IR. Let € > 0 be such that m, + € < 1. < 7, — €. We shall construct numbers a,,,a, €
[v(7e),T(m.)] and functions v,,, T, with the following properties for all n = 1,2,...:

(i) @, <an;
(i) @pi1 > @, and @y < Tp;

(il) w,,0Un ¢ [m¢ 4+ €,m —€] — IR are continuous and solve (G.2) on |m; + €,7.[ and (G.3) on

|7e, mr — €] subject to v, (7 + €) = Up(me +€) =V(mp + €), v, (7r — €) = Up (1, — €) = V(7 — €),
) = 0y, Fn(ﬂ—c) = Qnp;

V() = a
(iv) vy, (me—) < v, (Tet) and Ty, (Te—) = 0, (Te+);
(v) v<v, <U, <Tonlm+ €, — €
(Vi) ¥py1 >0, and Tpp1 < Up.

For n = 1, we set a; = v(m.) and @3 = T(m.), so (i) holds. Using Proposition G.1 separately to
the left and right of 7., we find a function v; satisfying (iii) and v < v; < 7, and a function 7y
satisfying (iii) and v; < 7; < 0. Property (iv) is then obvious, and a simple argument similar to the
one given at the end of the previous proof shows (v). Suppose we have constructed a,,,ay,v, and
T, with (i) and (iii) (v). If v}, (7.—) = v}, (7+) or T, (7.—) = U, (7+), we simply set a, ., = a,,
Gpi1 = Gy, Vyyy = U, and Ty yy = Tp. Otherwise, we consider a = (a,, + @y)/2 and a continuous
function v : [my + €,m, — €] — IR which satisfies v,, < v < 7, and solves (G.2) on |mp + €, 7. and
(G.3) on |7, 7 — €] subject to v(m, + €) = V(m +€), v(m, —€) = V(7w — €), v(7) = a. Such a function
exists by Proposition G.1, and it is again straightforward to see that v,, < v <7, on |m + €, 7, — €.
If v (me—) < V' (7o), we set @, ) = a, Gp1 = Ap, Vyyyp = 0 and Uppq = Ty if V' (1.—) > V' (7. +), we
set @, 1 = a,, nt1 = a, v, = v, and T4 = v. This procedure clearly implies (i) (vi).
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If none of the functions v,, or 7, is differentiable at 7., then the sequences (a,,) and (@, ) converge
to a common limit ae., and by Bernfeld and Lakshmikantham (1974, Corollary 1.5.1), the sequences
(v,) and (7,) have subsequences converging uniformly to functions v, < Ty which solve (G.2)
and (G.3) on the respective open intervals, with the corresponding subsequences of (v),) and (7))
converging to v, and UL, respectively. As v (Te) = Uoo(Te) = aoo, we have v (m.—) > U (Te—)
and vl (m.+) < T (me+). On the other hand, vl (7.—) < vl (me+) and T (m.—) > Tho (7e+), hence
Vi (Te—) > U (Te—) > To (Met) > Vo (M) > vl (m.—), implying equality throughout.

For any small € > 0, we can therefore always find a function ve on [y + €, 7, — €] which solves
(G.2) on |mp+e€,m.[ and (G.3) on |7, 7, — €[, is differentiable at 7., and satisfies ve(mp +€) = T(mp +€),
V(T — €) =T(m,. — €), and v < v < T everywhere else.

Finally, consider a sequence vy, : [+ €g, T — €] — IR of such functions for small positive numbers
(ex) k=1,2,.. converging monotonically to 0. By Bernfeld and Lakshmikantham (1974, Theorem 1.4.1),
there is an Ny, > 0 such that |v'| < Ny, on [m¢ + €g, 7, — €;] for any solution lying between v and T on
this interval. Thus for any fixed integer K > 1 and all £ > K, vy is a solution satisfying v < vy < 7T
and |v},| < Ng on [1; + €k, T — €k, so the sequences (vy)g>k and (v,)r>k are both uniformly
bounded and equicontinuous on that interval. Employing the standard diagonalisation argument, we
obtain a subsequence which converges uniformly on all compact subintervals of |7, 7,.[ to a function
v with the desired properties. [ |

Our analysis of the Bellman equation lead us to the following second-order differential equation
for the adjusted value function v*:

T(ﬂ')@ =rG(mo(m)) + A {f(ﬂ') G(m,v(m)) + (7 — ﬁ')%G(ﬂ',v(ﬂ'))} (G.4)
with )
f(ﬂ-) :2_(77_77) 7_(71_)

and G defined by equation (13). We saw that G is continuously differentiable in the area A with the
exception of the central ray in case ¢ lies in the interior of Q™; if this is the case, we consider the
ODE separately to the left and to the right of the central ray. Throughout, we will assume that at
least one of the parameters  and A is strictly positive.

Lemma G.1 The myopic pay-off function m is a strict subsolution of (G.4) on 10,1[ if § is not in
the interior of @™, and on |0,1] —{#} otherwise.

Proor: m” > 0, and we have G(m,m(m)) = 0 on the stated sets of beliefs. |
Lemma G.2 The full information pay-off function T is a strict supersolution of (G.4).

Proor: m” = 0, so we have to show that the right-hand side of (G.4) with v(7) replaced by
m(m) = (1 —m)m(0) + mm(1) is positive.

Suppose first that (7, m(m)) lies to the left of R, or to the right of R,. Then that right-hand side
becomes

PAEEE + o (- m) B A ) — ) 7 )
+ o | D ey 4 i 7 )

with H (7)) = [m(r) — m(n)]/[m(r) —m]. The first term is clearly positive. The expressions in square
brackets associated with \g and Ay simplify to ho(m)/(M(7) —1h)? and hy (7)/(M(7) —11)? respectively,
where hg and h, are quadratics in 7:

ho(m) = K [m(1) —m—+[m(0) —m(1)] (1 —m)?],
hi(m) = K [m(0) —m+ [m(1) — m(0)] 7%
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with K = Bo 1 [¢™(0) —¢™(1)]>. Thus, ho(0) = hy(0) = K [m(0) — 1] and ho(1) = hy(1) =
K [m(1) — m], so hg and hy are both non-negative at each end of the unit interval. As the two
quadratics are strictly monotonic on [0, 1], they are both non-negative over the entire unit interval.

Next consider m such that (m,7(m)) lies between the rays Ry and R,.. In such a region, the
right-hand side for ™ can be written as

G(m) +T ()

rG(m) + o (1—1) E@W - 5’(77)} T [1 :

where G(7) = (m(r) —m(m) + B(m)[q" — ¢™(m)]?)/[q" — 4] and the quantity ¢ is either ¢pax OF Guin-
Again, the first term is clearly positive. The expressions in square brackets associated with Ag and
A1 simplify to fo(m) /(7 [qf — §]%) and #1(7)/((1 — m)[q" — §]?) respectively, where £y and /1 are the
following linear functions:

lo(m) = (Pola" —a™ (O +prle" —a™ (D) + (Bola" — ¢ (0)]* = Bula" — g™ (V)]?) (1 —7),
t(m) = (Puld" —a™ WP + o la" —a™(O0)) + (Bila" =™ (D] = Bo[a" — ™ (0)]%) .
By inspection, these functions are positive on the unit interval. [ |
Define

Me(m) = T ; T m(0) + %m

for 0 <7 <7, and

1—m T—7
m(m) = 1—7?7n+ l—ﬁnl(l)

for # < < 1. The graphs of these functions are the rays joining (7, 7) with (0,m(0)) and (1,m(1))
respectively.

?

Lemma G.3 Let § lie in the interior of Q™. Then the functions my : [0,7] — R andm, : [7,1] — R
are strict supersolutions of (G.4).

ProoF: The functions 7, and T, are linear, so iy = 0 and m,. = 0, and their graphs lie entirely
in the sub-regions of A associated with interior solutions. A slightly more complicated variant of the
algebra in the first part of the previous proof shows that the right-hand side of (G.4) is positive for
these functions.

Lemma G.4 If § does not lie in the interior of Q™, then the right-hand side of the ODE (G.4) is
reqular with respect to m and m on each closed interval contained in ]0,1[. Otherwise, the right-hand
side of the ODE is regular with respect to m and Ty on each closed interval contained in |0, %[, and
regular with respect to m and M, on each closed interval contained in |7, 1][.

Proor: This follows directly from the fact that in the regions associated with interior solutions, the
ODE (G.4) is equivalent to the equation 7(m)v”(7)/2 = F[r,v(mw),v' ()] where

Ap
Flm,vo,v1] = B(7) { <r +A l:f(?T) + (m— ﬁ)%}) H(m,vo) + A(m —7) Hy [W,z)o,vl]}
with . ,
Himv) = vg — m,Eﬂ') ’ Hylr,vo,v1] = m(m) - m o m (772 .
vy — M (vo — 1h)? vy — M
In particular, v; enters linearly. [ |

Proposition G.2 Suppose that § does not lie in the interior of Q™. Then there is a conlinuous
function v : [0,1] — IR which solves (G.4) on 10,1 with v(0) = m(0), v(1) = m(1), and m <v <™
on 10, 1].
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Proor: This follows from Lemmas G.1, G.2 and G.4 and Corollary G.1 applied with 7, =0, 7. = 1
and Fy = F,. = F as given in the proof of Lemma G.4. [ |

Proposition G.3 Suppose that G lies in the interior of @™, and fir ® € 0,1[—{#}. Then there are
positive constants ¢; and cg such that for all v > 0, A > 0 and o > 0 satisfying r + c;A > co/0?,
there exists a continuous function v : [0,1] — IR which solves (G.4) on ]0,1[ —{7} with the following
properties: m < v <y on |0, 7[; m <v <, on |7, 1[; v —m < 2(m —m) in a neighbourhood of 7.
In particular, v is differentiable with v(7) = m and V' (%) = 0.

PrOOF: Consider the function m defined by m(r) = 2m(m) — . Let 7ty be the belief where the
graph of 1 intersects the graph of m,, and 7, the belief where the graph of m intersects the graph of
m,. Define

c=, min )+ -DAB/E], =205 max TUZFLIE

Foe<m<Fr Fo<m<Fr B(m)
While ¢5 is clearly positive, the positivity of ¢; follows from the identity

F) 4 (o — ) AB w1 —m)?(Bo + B(m)) + (1 — F)m? (81 + B()) .
() m(1 —m)B(x)
Now let 7 + ¢1 A > ¢o/0?, implying that m is a supersolution of (G.4).

Clearly, the right-hand side of (G.4) is regular with respect to m and m on each closed subinterval
of [ite, 7] — {#}. Since 1/ (%,) < m,(7te) and m/ (7t,.) > M, (%), Lemma G.3 and Corollary G.1, applied
separately to the left and right of 7, yield a continuous function v :]0,1[— IR which solves (G.4) on
10,1[ —{#} with m < v < 7g on |0,7], m < v <M, on [f,1], and m < v < 1 on [#e, 7,]. This
function extends continuously to the boundaries of [0,1], and the same argument as in the proof of
Proposition G.1 shows that the first and second of these inequalities are strict on ]0,1[ —{#}. |

Proposition G.4 Suppose that § lies in the interior of Q™ and is equal to q.. Then there are positive
constants c3, ¢4 and cs such that for all™ > 0, A > 0 and o > 0 satisfying csr + c4A < (25/02, there
exists a continuous function v : [0,1] — IR with the following properties: v is once continuously
differentiable and satisfies m < v < on |0,1[; v(0) = m(0) and v(1) = m(1); and v solves (G.4) on

10,1 —{7}.
PrROOF: Choose a strictly convex function m : [0,1] — IR with the following properties: m(0) =
m(0) and m(1) = m(1); m = m on some intervals [0,7] and [7,,1] with 0 < 7, < & < 7, < 1;

m > m on |7, m,[; m has a continuous first derivative on [0, 1] and a continuous second derivative on

[1,0] = {me, 7, }.%° Define G(7) = G(m,m(r)). Next, set
c3 = ID;LXQ(W), cy = sup [f(m) G(m) + (7 — ) G' ()]

n€[meme]— {7} o

and

cs = AB?  min m* (1 —m)* ()
T <<y 2 ﬁ(ﬂ')
The constants c3 and c5 are clearly positive. As to c4, there is at least one belief 71 in 7o, mp| such
that (7t — 7) G'(77) > 0, hence ¢y > f(7') G(nT) > 0. (The positivity of the function f follows from
an equation given in the previous proof by setting AF = 0.) Moreover, ¢4 is finite since G has finite
one-sided derivatives at 7.

Now let » > 0, A > 0 and o > 0 be such that c37 + c4A < ¢5/0%. By construction, this implies
that m is a subsolution of (G.4) both to the left and to the right of the central ray R.. As § = qc,
this ray is vertical at # = 7. Arguing as in the proof of Lemma G.4, we see that the right-hand side
of the ODE is regular with respect to m and ™ on each closed interval contained in |0, 7] or [7, 1],
where it is understood that the appropriate one-sided limit is used to calculate the right-hand side of
the ODE at #. The result thus follows from Lemma G.2 and Corollary G.1. [ |

30For example, define ¢(m) = (7 — m¢)?*(m — m,)? on |me, .| and (1) = 0 everywhere else; then
m(m) = [1 4 6 ¢(m)] m(m) will have the desired properties for 6 > 0 sufficiently small.
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H Numerical Simulations

The adjusted value function can be calculated approximately as a numerical solution to a two-point
boundary value problem, namely the ODE (20) subject to the boundary conditions v*(0) = m(0) and
v*(1) = m(1). We used the method of relazation®' to do this. Beliefs were discretised with a step
size of 1073, decreasing to 1075 around the confounding belief. The iterative procedure was deemed
to have converged when the maximum pointwise difference between successive approximations to the
value function and its first derivative were less than 0.0001%. Convergence was quite rapid, varying
from 5 iterations for a high discount rate without switching, to 18 iterations for a low discount rate
with an intermediate switching intensity close to the critical level. The procedure was implemented
on a VAX minicomputer under VMS v5.4. Each iteration took approximately 19 seconds of CPU
time, so the numerical solutions each took between only 1.5 and 6 minutes to calculate.

Given a numerical approximation to the adjusted value function, the optimal policy correspon-
dence immediately yields an approximately optimal policy function. To generate sample paths of
posterior beliefs and optimal quantities, we first chose an initial state and an initial belief. One itera-
tion then consisted of the following steps: (a) calculate the optimal quantity given the current belief
(using the above numerical results); (b) introduce a shock; (¢) update the belief using equation (4) in
its discrete form, namely

(Sﬂ't = )\(7'('15) ot + 0'72771/(1 — Wt)(kt — Wt)(A()é — Aﬁ (]t)2 ot
+ O'_lﬂ't(l — Wt)(A()[ — A/B Qt) (SZt,

(d) update the state if required (depending on the transition probabilities Ag and A1). These four steps
are then repeated to generate a succession of beliefs and quantities. State switching was implemented
by repeatedly drawing a number from the uniform distribution on the unit interval (all the examples
reported in the paper have 7 = (0.5, that is Ay = Ay = A/2). If the number drawn is less than
1 — exp(—A/2), then the state remains unchanged, else it switches. Over a time interval of 100, we
expect to see 10 switches for A = 0.2. For other values of A, the time interval is ‘stretched’ accordingly,
so for A = 0.05, for example, we expect these 10 switches to occur by the time ¢t = 400.

The shocks were generated by repeated draws from the standard normal distribution. For given
time increment 8¢, the shock 67 was taken to be /6t times the draw from the standard normal
distribution.

In order to maintain a reasonable approximation to the continuous case that we are modelling,
we must ensure that each 67 is not so large that the agent’s belief can jump to (or past) 0, 1, or
7. To achieve this, the time variable was incremented by 0.05 in each discrete period, i.e. 6t = 0.05.
(This means that in the graphs illustrating the cases without state switching there are several hundred
iterations, and in those with state switching there are a few thousand.)
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Figure 3: Value function & optimal policy for r = 0.1, A = 0.05, #* = 0.5; 7

The bold lines are the adjusted value function v* and the optimal policy function ¢*.
The thin lines are the myopic optimum pay-off m and the myopic policy ¢™.

The upper panel shows the three rays R;, R. and R,.
In the upper panel, the value function u* is plotted as the dashed line.
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The dashed line indicates the state switches.
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